Calcium uptake and release modulated by counter-ion conductances in the sarcoplasmic reticulum of skeletal muscle. 1996

R H Fink, and C Veigel
II. Institute of Physiology, University of Heidelberg, Germany.

The sarcoplasmic reticulum (SR) plays the central role in regulating the free myoplasmic Ca2+ level for the contractile activation of skeletal muscle. The initial stages of the voltage-controlled Ca2+ release mechanism are known in molecular detail. However, there is still very little known about the later stages of Ca2+ uptake and total Ca2+ turnover in the contraction-relaxation cycle under normal physiological conditions or under conditions influenced by fatigue or disease. Ca2+ uptake and release are both accompanied by "counter-ion' movements across the SR membrane which prevent or reduce the generation of SR membrane potentials and balance for electroneutrality in the SR lumen. The SR membrane is permeable for the cations K+, Na+, H+ and Mg2+ and the anion Cl-. Using electron-probe X-ray microanalysis. It has been shown that during tetanic stimulation the Ca2+ release was mainly balanced by uptake of K+ and Mg2+ leaving a charge deficit that was assumed to be neutralized via H+ ion or organic counter-ion movement. The low time resolution of electron-probe X-ray microanalysis leaves the possibility of other transient concentration changes in the SR, e.g. for Cl- ions. Possible physiological roles of the SR counter-ion conductances can be tested using skinned muscle fibre preparations with intact sarcoplasmic reticulum and removed or chemically permeabilized outer sarcolemma. In skinned fibres, the SR K+ conductance can be effectively reduced with SR K+ channel blockers such as 4-aminopyridine, tetraethylammonium and decamethonium. Interestingly, these blockers increase Ca2+ loading as well as Ca2+ release, whereas other less specific blockers, such as 1.10-bis-quanidino-n-decane, seem to reduce Ca2+ release, possibly also via blocking Ca2+ release channels. Thus, it seems very important also to test the effects of counter-currents carried by K+, Mg2+, H+ or Cl- ions on intact and voltage-clamped single-fibre preparations.

UI MeSH Term Description Entries
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000252 Calcium-Transporting ATPases Cation-transporting proteins that utilize the energy of ATP hydrolysis for the transport of CALCIUM. They differ from CALCIUM CHANNELS which allow calcium to pass through a membrane without the use of energy. ATPase, Calcium,Adenosinetriphosphatase, Calcium,Ca(2+)-Transporting ATPase,Calcium ATPase,Calcium Adenosinetriphosphatase,Adenosine Triphosphatase, Calcium,Ca2+ ATPase,Calcium-ATPase,ATPase, Ca2+,ATPases, Calcium-Transporting,Calcium Adenosine Triphosphatase,Calcium Transporting ATPases,Triphosphatase, Calcium Adenosine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012519 Sarcoplasmic Reticulum A network of tubules and sacs in the cytoplasm of SKELETAL MUSCLE FIBERS that assist with muscle contraction and relaxation by releasing and storing calcium ions. Reticulum, Sarcoplasmic,Reticulums, Sarcoplasmic,Sarcoplasmic Reticulums
D015220 Calcium Channels Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels
D018482 Muscle, Skeletal A subtype of striated muscle, attached by TENDONS to the SKELETON. Skeletal muscles are innervated and their movement can be consciously controlled. They are also called voluntary muscles. Anterior Tibial Muscle,Gastrocnemius Muscle,Muscle, Voluntary,Plantaris Muscle,Skeletal Muscle,Soleus Muscle,Muscle, Anterior Tibial,Muscle, Gastrocnemius,Muscle, Plantaris,Muscle, Soleus,Muscles, Skeletal,Muscles, Voluntary,Skeletal Muscles,Tibial Muscle, Anterior,Voluntary Muscle,Voluntary Muscles

Related Publications

R H Fink, and C Veigel
March 1994, Toxicology and applied pharmacology,
R H Fink, and C Veigel
November 1982, South African medical journal = Suid-Afrikaanse tydskrif vir geneeskunde,
R H Fink, and C Veigel
February 1988, Biochimica et biophysica acta,
R H Fink, and C Veigel
March 1993, Archives of biochemistry and biophysics,
R H Fink, and C Veigel
January 2005, Advances in experimental medicine and biology,
R H Fink, and C Veigel
January 1988, Progress in clinical and biological research,
Copied contents to your clipboard!