Somatotropin release-inhibiting factor and galanin innervation in the hypothalamus and pituitary of seabream (Sparus aurata). 1996

D M Power, and A V Canario, and P M Ingleton
Universidade do Algarve, UCTA, Faro, Portugal.

The distribution of galanin (GAL) and somatotropin-release-inhibiting-factor (SRIF) immunoreactivity in the hypothalamus and pituitary of the sea bream (Sparus aurata) was studied by immunocytochemistry. An extensive system of neurons immunoreactive with antisera to the two peptides was identified throughout the brain with staining particularly in the hypothalamus. In the hypothalamus, GAL immunoreactive perikarya were detected principally in the nucleus preopticus and nucleus tuberis. Major nerve tracts were observed to sweep down from the hypothalamic nuclei and reached the pituitary via the preoptico-hypophysial tract. Many of the fibers had varicose swellings indicating they were secretory. SRIF immunoreactivity was distributed similarly to GAL but the network of nerve fibers was less dense; no colocalization of these two peptides was seen. SRIF immunoreactive perikarya were present in the preoptic nucleus, the tuberal nucleus, and the basolateral hypothalamus. These perikarya were large and densely staining and were predominately bipolar, although some multipolar perikarya were observed. In the pituitary GAL and SRIF immunoreactivities were confined principally to the pars distalis where fibers infiltrated between growth hormone, prolactin, and adrenocorticotrophic cells. More of the fibers were immunoreactive for SRIF than for GAL. There was no immunoreaction for GAL or SRIF in any of the pituitary cells. There is thus morphological evidence for a neuroendocrine control of the pars distalis by GAL and SRIF and for a possible functional interaction between these two systems.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D010473 Perciformes The most diversified of all fish orders and the largest vertebrate order. It includes many of the commonly known fish such as porgies, croakers, sunfishes, dolphin fish, mackerels, TUNA, etc. Bluegill,Croakers,Dolphin Fish,Porgies,Sparid Fish,Sparus,Sunfishes,Centrarchidae,Mackerels,Mahi-Mahi,Bluegills,Croaker,Fish, Sparid,Mackerel
D010902 Pituitary Gland A small, unpaired gland situated in the SELLA TURCICA. It is connected to the HYPOTHALAMUS by a short stalk which is called the INFUNDIBULUM. Hypophysis,Hypothalamus, Infundibular,Infundibular Stalk,Infundibular Stem,Infundibulum (Hypophysis),Infundibulum, Hypophyseal,Pituitary Stalk,Hypophyseal Infundibulum,Hypophyseal Stalk,Hypophysis Cerebri,Infundibulum,Cerebri, Hypophysis,Cerebrus, Hypophysis,Gland, Pituitary,Glands, Pituitary,Hypophyseal Stalks,Hypophyses,Hypophysis Cerebrus,Infundibular Hypothalamus,Infundibular Stalks,Infundibulums,Pituitary Glands,Pituitary Stalks,Stalk, Hypophyseal,Stalk, Infundibular,Stalks, Hypophyseal,Stalks, Infundibular
D011388 Prolactin A lactogenic hormone secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). It is a polypeptide of approximately 23 kD. Besides its major action on lactation, in some species prolactin exerts effects on reproduction, maternal behavior, fat metabolism, immunomodulation and osmoregulation. Prolactin receptors are present in the mammary gland, hypothalamus, liver, ovary, testis, and prostate. Lactogenic Hormone, Pituitary,Mammotropic Hormone, Pituitary,Mammotropin,PRL (Prolactin),Hormone, Pituitary Lactogenic,Hormone, Pituitary Mammotropic,Pituitary Lactogenic Hormone,Pituitary Mammotropic Hormone
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013004 Somatostatin A 14-amino acid peptide named for its ability to inhibit pituitary GROWTH HORMONE release, also called somatotropin release-inhibiting factor. It is expressed in the central and peripheral nervous systems, the gut, and other organs. SRIF can also inhibit the release of THYROID-STIMULATING HORMONE; PROLACTIN; INSULIN; and GLUCAGON besides acting as a neurotransmitter and neuromodulator. In a number of species including humans, there is an additional form of somatostatin, SRIF-28 with a 14-amino acid extension at the N-terminal. Cyclic Somatostatin,Somatostatin-14,Somatotropin Release-Inhibiting Hormone,SRIH-14,Somatofalk,Somatostatin, Cyclic,Somatotropin Release-Inhibiting Factor,Stilamin,Somatostatin 14,Somatotropin Release Inhibiting Factor,Somatotropin Release Inhibiting Hormone
D013006 Growth Hormone A polypeptide that is secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Growth hormone, also known as somatotropin, stimulates mitosis, cell differentiation and cell growth. Species-specific growth hormones have been synthesized. Growth Hormone, Recombinant,Pituitary Growth Hormone,Recombinant Growth Hormone,Somatotropin,Somatotropin, Recombinant,Growth Hormone, Pituitary,Growth Hormones Pituitary, Recombinant,Pituitary Growth Hormones, Recombinant,Recombinant Growth Hormones,Recombinant Pituitary Growth Hormones,Recombinant Somatotropins,Somatotropins, Recombinant,Growth Hormones, Recombinant,Recombinant Somatotropin

Related Publications

D M Power, and A V Canario, and P M Ingleton
February 2000, Cryobiology,
D M Power, and A V Canario, and P M Ingleton
January 2019, Frontiers in physiology,
D M Power, and A V Canario, and P M Ingleton
February 2016, Journal of fish biology,
D M Power, and A V Canario, and P M Ingleton
September 2017, Mutation research. Genetic toxicology and environmental mutagenesis,
D M Power, and A V Canario, and P M Ingleton
December 1992, Biology of reproduction,
D M Power, and A V Canario, and P M Ingleton
December 2008, Diseases of aquatic organisms,
D M Power, and A V Canario, and P M Ingleton
October 2010, Marine drugs,
D M Power, and A V Canario, and P M Ingleton
February 1974, Nihon Naibunpi Gakkai zasshi,
D M Power, and A V Canario, and P M Ingleton
November 2010, Marine pollution bulletin,
Copied contents to your clipboard!