Chondroid tissue in the early facial morphogenesis of the chick embryo. 1996

B Lengelé, and J Schowing, and A Dhem
Human Anatomy Research Unit, Faculty of Medicine, University of Louvain, Brussels, Belgium.

The calcified tissues involved in the early morphogenesis of the so-called intramembranous bones of the facial skeleton were studied by microradiographic and histological techniques in 22 chick embryos at the 9th, 12th and 14th days of incubation. On the 9th day, the bones of the upper face and palatal vault are made up of thin sheets of chondroid tissue, deposited in their respective mesenchymal condensations. Woven and lamellar bone formation subsequently takes place in each of them from the 12th day of incubation, mainly on the external side of their chondroid primordia. The same phenomena occur in the lower facial and mandibular bones. These facts indicate that the primitive facial desmocranium of the chick embryo, which is classically considered to be formed by intramembranous ossification, first consists of chondroid tissue. As in the cranial vault, this tissue thus represents the initial modality of the skeletogenic differentiation within the avian facial mesenchyme.

UI MeSH Term Description Entries
D008334 Mandible The largest and strongest bone of the FACE constituting the lower jaw. It supports the lower teeth. Mylohyoid Groove,Mylohyoid Ridge,Groove, Mylohyoid,Grooves, Mylohyoid,Mandibles,Mylohyoid Grooves,Mylohyoid Ridges,Ridge, Mylohyoid,Ridges, Mylohyoid
D008648 Mesoderm The middle germ layer of an embryo derived from three paired mesenchymal aggregates along the neural tube. Mesenchyme,Dorsal Mesoderm,Intermediate Mesoderm,Lateral Plate Mesoderm,Mesenchyma,Paraxial Mesoderm,Dorsal Mesoderms,Intermediate Mesoderms,Lateral Plate Mesoderms,Mesenchymas,Mesoderm, Dorsal,Mesoderm, Intermediate,Mesoderm, Lateral Plate,Mesoderm, Paraxial,Mesoderms, Dorsal,Mesoderms, Intermediate,Mesoderms, Lateral Plate,Mesoderms, Paraxial,Paraxial Mesoderms,Plate Mesoderm, Lateral,Plate Mesoderms, Lateral
D010159 Palate The structure that forms the roof of the mouth. It consists of the anterior hard palate (PALATE, HARD) and the posterior soft palate (PALATE, SOFT). Incisive Papilla,Incisive Papillas,Palates,Papilla, Incisive,Papillas, Incisive
D001846 Bone Development The growth and development of bones from fetus to adult. It includes two principal mechanisms of bone growth: growth in length of long bones at the epiphyseal cartilages and growth in thickness by depositing new bone (OSTEOGENESIS) with the actions of OSTEOBLASTS and OSTEOCLASTS. Bone Growth
D002113 Calcification, Physiologic Process by which organic tissue becomes hardened by the physiologic deposit of calcium salts. Bone Mineralization,Calcification, Physiological,Physiologic Calcification,Mineralization, Bone,Physiological Calcification
D002356 Cartilage A non-vascular form of connective tissue composed of CHONDROCYTES embedded in a matrix that includes CHONDROITIN SULFATE and various types of FIBRILLAR COLLAGEN. There are three major types: HYALINE CARTILAGE; FIBROCARTILAGE; and ELASTIC CARTILAGE. Cartilages
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D005109 Extracellular Matrix A meshwork-like substance found within the extracellular space and in association with the basement membrane of the cell surface. It promotes cellular proliferation and provides a supporting structure to which cells or cell lysates in culture dishes adhere. Matrix, Extracellular,Extracellular Matrices,Matrices, Extracellular
D005145 Face The anterior portion of the head that includes the skin, muscles, and structures of the forehead, eyes, nose, mouth, cheeks, and jaw. Faces
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

B Lengelé, and J Schowing, and A Dhem
July 1967, Developmental biology,
B Lengelé, and J Schowing, and A Dhem
June 2014, Genesis (New York, N.Y. : 2000),
B Lengelé, and J Schowing, and A Dhem
October 1975, Journal of embryology and experimental morphology,
B Lengelé, and J Schowing, and A Dhem
July 1969, Comptes rendus hebdomadaires des seances de l'Academie des sciences. Serie D: Sciences naturelles,
B Lengelé, and J Schowing, and A Dhem
January 1975, Verhandlungen der Anatomischen Gesellschaft,
B Lengelé, and J Schowing, and A Dhem
October 2011, Journal of visualized experiments : JoVE,
B Lengelé, and J Schowing, and A Dhem
March 1974, Wilhelm Roux' Archiv fur Entwicklungsmechanik der Organismen,
B Lengelé, and J Schowing, and A Dhem
October 1952, Journal of anatomy,
B Lengelé, and J Schowing, and A Dhem
October 1979, The American journal of anatomy,
B Lengelé, and J Schowing, and A Dhem
August 1987, The Journal of cell biology,
Copied contents to your clipboard!