Depolarization-evoked increases in cytosolic calcium concentration in isolated smooth muscle cells of rat portal vein. 1996

T Kamishima, and J G McCarron
Institute of Biomedical and Life Sciences, University of Glasgow, UK.

1. Ca2+ current through voltage-dependent Ca2+ channels (ICa) and intracellular free Ca2+ concentration ([Ca2+]i) were measured simultaneously in rat portal vein smooth muscle cells using conventional whole-cell voltage clamp technique and high temporal resolution microfluorimetry. 2. The relationship between depolarization-evoked ICa and rise in [Ca2+]i was examined. The extracellular Ca2+ concentration dependence and the voltage dependence of the depolarization-evoked increases in ICa and [Ca2+]i were similar. Both ICa and increased [Ca2+]i were blocked to a similar extent by nimodipine and cadmium and augmented by Bay K 8644. Furthermore, the time course of the measured increase in [Ca2+]i, closely followed the increase in [Ca2+]i expected from the time-integrated ICa. These observations suggest that the depolarization-evoked rise in [Ca2+]i was tightly coupled to ICa. 3. The cytosolic Ca2+ buffering capacity, determined as the ratio of the expected increase in [Ca2+]i (from ICa) divided by the measured increase in [Ca2+]i, was over 100. Therefore, less than 1 out of 100 Ca2+ ions entering the cell appears as a free Ca2+. 4. Ryanodine (30 microM), a blocker of the Ca(2+)-induced Ca2+ release mechanism, had little effect on buffering capacity measured over the first 200 ms of the depolarizing voltage clamp pulse. Ryanodine also had little effect on the buffering capacity during 800-1000 ms of the depolarizing voltage clamp pulse. Therefore, it was concluded that there is little Ca(2+)-induced Ca2+ release from the stores in rat portal vein smooth muscle cells during depolarization-evoked Ca2+ entry. 5. During brief depolarizations, the largest [Ca2+]i increase and ICa occurred at 0 mV. However, during steady-state depolarization, the largest increase in [Ca2+]i occurred around -30 mV, and we estimate the peak steady-state ICa to be about 0.6 pA.

UI MeSH Term Description Entries
D008297 Male Males
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D009553 Nimodipine A calcium channel blockader with preferential cerebrovascular activity. It has marked cerebrovascular dilating effects and lowers blood pressure. Admon,Bay e 9736,Brainal,Calnit,Kenesil,Modus,Nimodipin Hexal,Nimodipin-ISIS,Nimodipino Bayvit,Nimotop,Nymalize,Remontal,Bayvit, Nimodipino,Hexal, Nimodipin,Nimodipin ISIS,e 9736, Bay
D011169 Portal Vein A short thick vein formed by union of the superior mesenteric vein and the splenic vein. Portal Veins,Vein, Portal,Veins, Portal
D002104 Cadmium An element with atomic symbol Cd, atomic number 48, and atomic weight 112.41. It is a metal and ingestion will lead to CADMIUM POISONING.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002120 Calcium Channel Agonists Agents that increase calcium influx into calcium channels of excitable tissues. This causes vasoconstriction in VASCULAR SMOOTH MUSCLE and/or CARDIAC MUSCLE cells as well as stimulation of insulin release from pancreatic islets. Therefore, tissue-selective calcium agonists have the potential to combat cardiac failure and endocrinological disorders. They have been used primarily in experimental studies in cell and tissue culture. Calcium Channel Activators,Calcium Channel Agonists, Exogenous,Calcium Channel Agonist,Exogenous Calcium Channel Agonists,Activators, Calcium Channel,Agonist, Calcium Channel,Agonists, Calcium Channel,Channel Activators, Calcium,Channel Agonist, Calcium,Channel Agonists, Calcium
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D003592 Cytophotometry A method for the study of certain organic compounds within cells, in situ, by measuring the light intensities of the selectively stained areas of cytoplasm. The compounds studied and their locations in the cells are made to fluoresce and are observed under a microscope. Microfluorometry,Cytophotometries,Microfluorometries
D003600 Cytosol Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components. Cytosols

Related Publications

T Kamishima, and J G McCarron
July 1993, Cardiovascular research,
T Kamishima, and J G McCarron
January 1995, Life sciences,
T Kamishima, and J G McCarron
January 1996, Clinical and experimental pharmacology & physiology,
T Kamishima, and J G McCarron
March 1999, Acta physiologica Scandinavica,
T Kamishima, and J G McCarron
August 1989, European journal of pharmacology,
T Kamishima, and J G McCarron
June 1992, Pflugers Archiv : European journal of physiology,
T Kamishima, and J G McCarron
May 1989, The Journal of physiology,
T Kamishima, and J G McCarron
January 1985, Hypertension (Dallas, Tex. : 1979),
Copied contents to your clipboard!