Increased subthalamic neuronal activity after nigral dopaminergic lesion independent of disinhibition via the globus pallidus. 1996

O K Hassani, and M Mouroux, and J Féger
Laboratoire de Pharmacologie, Faculté des Sciences Pharmaceutiques et Biologiques, Université R. Descartes, Paris, France.

Electrophysiological records of unit activity were used to compare the effects of excitotoxic pallidal lesions and 6-hydroxydopamine-induced damage to the midbrain dopaminergic neurons on the discharge rates and patterns of the subthalamic neurons. Removal of the pallidal input induced a slight, but statistically significant, increase (19.5%) in the discharge rate and no change in the firing pattern when compared to control animals. The rats with a dopaminergic lesion showed greater increase (105.7%) while the firing pattern activity of the subthalamic neurons became more irregular, with burst. These results indicate that the increased activity of the subthalamic neurons following a midbrain dopaminergic lesion cannot be due solely to inhibition-disinhibition involving the striato-pallido-subthalamic pathway and induced by the striatal dopaminergic depletion.

UI MeSH Term Description Entries
D007051 Ibotenic Acid A neurotoxic isoxazole (similar to KAINIC ACID and MUSCIMOL) found in AMANITA mushrooms. It causes motor depression, ataxia, and changes in mood, perceptions and feelings, and is a potent excitatory amino acid agonist. Acid, Ibotenic
D008297 Male Males
D008845 Microinjections The injection of very small amounts of fluid, often with the aid of a microscope and microsyringes. Microinjection
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D005110 Extracellular Space Interstitial space between cells, occupied by INTERSTITIAL FLUID as well as amorphous and fibrous substances. For organisms with a CELL WALL, the extracellular space includes everything outside of the CELL MEMBRANE including the PERIPLASM and the cell wall. Intercellular Space,Extracellular Spaces,Intercellular Spaces,Space, Extracellular,Space, Intercellular,Spaces, Extracellular,Spaces, Intercellular
D005917 Globus Pallidus The representation of the phylogenetically oldest part of the corpus striatum called the paleostriatum. It forms the smaller, more medial part of the lentiform nucleus. Paleostriatum,Pallidum,Pallidums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013378 Substantia Nigra The black substance in the ventral midbrain or the nucleus of cells containing the black substance. These cells produce DOPAMINE, an important neurotransmitter in regulation of the sensorimotor system and mood. The dark colored MELANIN is a by-product of dopamine synthesis. Nigra, Substantia,Nigras, Substantia,Substantia Nigras
D013565 Sympatholytics Drugs that inhibit the actions of the sympathetic nervous system by any mechanism. The most common of these are the ADRENERGIC ANTAGONISTS and drugs that deplete norepinephrine or reduce the release of transmitters from adrenergic postganglionic terminals (see ADRENERGIC AGENTS). Drugs that act in the central nervous system to reduce sympathetic activity (e.g., centrally acting alpha-2 adrenergic agonists, see ADRENERGIC ALPHA-AGONISTS) are included here. Sympathetic-Blocking Agents,Sympatholytic,Sympatholytic Agent,Sympatholytic Drug,Sympatholytic Agents,Sympatholytic Drugs,Sympatholytic Effect,Sympatholytic Effects,Agent, Sympatholytic,Agents, Sympathetic-Blocking,Agents, Sympatholytic,Drug, Sympatholytic,Drugs, Sympatholytic,Effect, Sympatholytic,Effects, Sympatholytic,Sympathetic Blocking Agents

Related Publications

O K Hassani, and M Mouroux, and J Féger
March 2003, Journal of neurophysiology,
O K Hassani, and M Mouroux, and J Féger
September 2000, Neuroreport,
O K Hassani, and M Mouroux, and J Féger
April 2013, The Lancet. Neurology,
O K Hassani, and M Mouroux, and J Féger
June 1984, Brain research,
O K Hassani, and M Mouroux, and J Féger
May 2006, The American journal of psychiatry,
O K Hassani, and M Mouroux, and J Féger
January 1993, Journal of neurosurgery,
O K Hassani, and M Mouroux, and J Féger
May 2004, Movement disorders : official journal of the Movement Disorder Society,
O K Hassani, and M Mouroux, and J Féger
February 2005, Sheng li xue bao : [Acta physiologica Sinica],
Copied contents to your clipboard!