Burst stimulation of the medial forebrain bundle selectively increase Fos-like immunoreactivity in the limbic forebrain of the rat. 1996

K Chergui, and G G Nomikos, and J M Mathé, and F Gonon, and T H Svensson
Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden.

The present study was designed to evaluate the postsynaptic functional consequences of different presynaptic activity patterns in midbrain dopamine systems using electrical stimulation of the rat medial forebrain bundle and subsequent determination of c-fos expression, used as a marker for neuronal activation, in dopamine target areas, by means of Fos immunohistochemistry. Nerve terminal dopamine release evoked by electrical stimulation of the medial forebrain bundle was monitored in the same animals using in vivo voltammetry. A 5 Hz stimulation consisting of 60 trains of five pulses and lasting 1 min was applied to the medial forebrain bundle. This stimulation was repeated 15 times every 3 min. Its pattern was defined by the interpulse interval which was either 70 ms or 200 ms for burst or regularly spaced stimulation, respectively. Our results show that burst stimulation of the medial forebrain bundle, which increase release of dopamine in target areas, increases the basal Fos-like immunoreactivity in the stimulated hemisphere, while regular stimulation does not affect expression of this protein. Moreover, the increase in Fos-like immunoreactivity induced by burst stimulation is restricted to limbic related structures, i.e. nucleus accumbens shell and intermediate aspect of the lateral septum, and the major island of Calleja, but is not observed in motor related structures (nucleus accumbens core and striatum). Pretreatment with the D1 dopamine receptor antagonist, SCH23390 (0.1 mg/kg, i.p.), blocked the increase in Fos-like immunoreactivity induced by burst stimulation of the medial forebrain bundle, suggesting a role for these receptors in the observed effects. Pretreatment with the 5-hydroxytryptamine2A/2C receptor antagonist ritanserin (0.4 mg/kg, i.p.) did not affect the increase in Fos-like immunoreactivity induced by burst stimulation in the nucleus accumbens shell or in the lateral septum, although it blocked the stimulated enhancement of Fos-like immunoreactivity in the major island of Calleja. The present data indicate that, rather than the absolute mean discharge rate of midbrain dopamine neurons, the temporal organization of the action potentials they generate conveys information to their target areas.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008032 Limbic System A set of forebrain structures common to all mammals that is defined functionally and anatomically. It is implicated in the higher integration of visceral, olfactory, and somatic information as well as homeostatic responses including fundamental survival behaviors (feeding, mating, emotion). For most authors, it includes the AMYGDALA; EPITHALAMUS; GYRUS CINGULI; hippocampal formation (see HIPPOCAMPUS); HYPOTHALAMUS; PARAHIPPOCAMPAL GYRUS; SEPTAL NUCLEI; anterior nuclear group of thalamus, and portions of the basal ganglia. (Parent, Carpenter's Human Neuroanatomy, 9th ed, p744; NeuroNames, http://rprcsgi.rprc.washington.edu/neuronames/index.html (September 2, 1998)). Limbic Systems,System, Limbic,Systems, Limbic
D008297 Male Males
D008474 Medial Forebrain Bundle A complex group of fibers arising from the basal olfactory regions, the periamygdaloid region, and the septal nuclei, and passing to the lateral hypothalamus. Some fibers continue into the tegmentum. Median Forebrain Bundle,Bundle, Medial Forebrain,Bundle, Median Forebrain,Bundles, Medial Forebrain,Bundles, Median Forebrain,Forebrain Bundle, Medial,Forebrain Bundle, Median,Forebrain Bundles, Medial,Forebrain Bundles, Median,Medial Forebrain Bundles,Median Forebrain Bundles
D009411 Nerve Endings Branch-like terminations of NERVE FIBERS, sensory or motor NEURONS. Endings of sensory neurons are the beginnings of afferent pathway to the CENTRAL NERVOUS SYSTEM. Endings of motor neurons are the terminals of axons at the muscle cells. Nerve endings which release neurotransmitters are called PRESYNAPTIC TERMINALS. Ending, Nerve,Endings, Nerve,Nerve Ending
D011954 Receptors, Dopamine Cell-surface proteins that bind dopamine with high affinity and trigger intracellular changes influencing the behavior of cells. Dopamine Receptors,Dopamine Receptor,Receptor, Dopamine
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001552 Benzazepines Compounds with BENZENE fused to AZEPINES.

Related Publications

K Chergui, and G G Nomikos, and J M Mathé, and F Gonon, and T H Svensson
May 1983, Neuroscience,
K Chergui, and G G Nomikos, and J M Mathé, and F Gonon, and T H Svensson
March 1999, Neuroscience,
K Chergui, and G G Nomikos, and J M Mathé, and F Gonon, and T H Svensson
March 2000, American journal of physiology. Regulatory, integrative and comparative physiology,
K Chergui, and G G Nomikos, and J M Mathé, and F Gonon, and T H Svensson
January 1993, Brain research,
K Chergui, and G G Nomikos, and J M Mathé, and F Gonon, and T H Svensson
January 1987, Physiology & behavior,
K Chergui, and G G Nomikos, and J M Mathé, and F Gonon, and T H Svensson
January 1988, Brain research,
K Chergui, and G G Nomikos, and J M Mathé, and F Gonon, and T H Svensson
May 1997, Behavioural brain research,
K Chergui, and G G Nomikos, and J M Mathé, and F Gonon, and T H Svensson
April 2001, The European journal of neuroscience,
K Chergui, and G G Nomikos, and J M Mathé, and F Gonon, and T H Svensson
October 1992, Synapse (New York, N.Y.),
K Chergui, and G G Nomikos, and J M Mathé, and F Gonon, and T H Svensson
August 2006, Behavioral neuroscience,
Copied contents to your clipboard!