Mesenteric arterial function in the rat in pregnancy: role of sympathetic and sensory-motor perivascular nerves, endothelium, smooth muscle, nitric oxide and prostaglandins. 1996

V Ralevic, and G Burnstock
Department of Anatomy and Developmental Biology, University College London.

1. The effects of pregnancy on mesenteric arterial function were examined in constantly perfused (5 ml min-1) mesenteric arterial beds isolated from 21-day pregnant rats. The function of sympathetic and sensory-motor perivascular nerves, endothelium and smooth muscle was examined. The role of nitric oxide and prostaglandins in vasoconstrictor function was tested by use of NG-nitro-L-arginine methyl ester (L-NAME; 100 microM) and indomethacin (10 microM), respectively. 2. Electrical field stimulation (EFS; 4-32 Hz, 1 ms, 90V, 30s) at basal tone elicited frequency-dependent vasoconstriction which was markedly reduced in preparations from pregnant rats at all frequencies. Vasoconstrictor responses to vasopressin and endothelin were also reduced in pregnancy and there was a trend towards a reduction in maximal responses to noradrenaline (NA). In contrast, there was no difference in vasoconstrictor responses to ATP, 5-hydroxytryptamine (5-HT) or angiotension II. 3. L-NAME (100 microM) augmented responses to EFS, NA, ATP and vasopressin in control mesenteric arterial preparations. In contrast, L-NAME augmented responses only to EFS in pregnancy, having no significant effect on responses to NA, ATP and vasopressin. 4. Indomethacin (10 microM) attenuated responses to NA and vasopressin, but not to EFS, in controls and in pregnancy. Responses to ATP were attenuated by indomethacin in controls but not in pregnancy. 5. Mesenteric preparations from pregnant rats were resistant to having tone raised by continuous perfusion with methoxamine. Despite an approximately 10 fold greater concentration of methoxamine, there was a significantly smaller increase in tone in preparations from pregnant, 34.27 +/- 4.8 mmHg (n = 11) compared to control, 65.92 +/- 5.4 mmHg (n = 11), rats. EFS (4-12 Hz, 60 V, 0.1 ms, 30s) in the presence of guanethidine (5 microM) to block sympathetic neurotransmission elicited frequency-dependent vasodilatation due to activation of sensory-motor nerves. Percentage relaxations were similar in preparations from pregnant and non-pregnant rats. 6. Dose-dependent endothelium-dependent vasodilatations to acetylcholine and ATP were similar in preparations from pregnant and non-pregnant rats. Endothelium-independent vasodilatation to sodium nitroprusside and to calcitonin gene-related peptide were also similar between the two groups. 7. There was no significant difference in the basal perfusion pressure of mesenteric arterial beds from control (21.3 +/- 1.0 mmHg, n = 24) and pregnant (20.2 +/- 1.2 mmHg, n = 23) rats. However, a step-wise increase in perfusate flow from 5 to 10, 15, 20 and 24ml min-1 produced smaller increases in perfusion pressure in pregnancy compared to the controls. L-NAME (100 microM) or indomethacin (10 microM) had no significant effect on the relationship between flow and perfusion pressure. 8. The present results show that prejunctional changes are involved in blunted sympathetic vasoconstriction of rat mesenteric arteries in pregnancy. Non-specific postjunctional changes are implicated in the reduced constrictor responses to applied methoxamine, vasopressin and endothelin, but not to ATP. In contrast, sensory-motor nerves and endothelium-dependent and -independent vasodilatation was unchanged. The decrease in receptor-mediated mesenteric arterial constrictor responsiveness in pregnancy does not appear to be due to acute modulation by NO or prostaglandins, but may involve changes in the distensibility of the bed and/or changes in wall thickness.

UI MeSH Term Description Entries
D007213 Indomethacin A non-steroidal anti-inflammatory agent (NSAID) that inhibits CYCLOOXYGENASE, which is necessary for the formation of PROSTAGLANDINS and other AUTACOIDS. It also inhibits the motility of POLYMORPHONUCLEAR LEUKOCYTES. Amuno,Indocid,Indocin,Indomet 140,Indometacin,Indomethacin Hydrochloride,Metindol,Osmosin
D008638 Mesenteric Arteries Arteries which arise from the abdominal aorta and distribute to most of the intestines. Arteries, Mesenteric,Artery, Mesenteric,Mesenteric Artery
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D010525 Peripheral Nerves The nerves outside of the brain and spinal cord, including the autonomic, cranial, and spinal nerves. Peripheral nerves contain non-neuronal cells and connective tissue as well as axons. The connective tissue layers include, from the outside to the inside, the epineurium, the perineurium, and the endoneurium. Endoneurium,Epineurium,Perineurium,Endoneuriums,Epineuriums,Nerve, Peripheral,Nerves, Peripheral,Perineuriums,Peripheral Nerve
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D005260 Female Females
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine

Related Publications

V Ralevic, and G Burnstock
September 1999, The American journal of physiology,
V Ralevic, and G Burnstock
October 1992, Experimental neurology,
V Ralevic, and G Burnstock
May 1995, The Journal of pharmacology and experimental therapeutics,
V Ralevic, and G Burnstock
September 1996, The American journal of physiology,
V Ralevic, and G Burnstock
September 2001, American journal of physiology. Heart and circulatory physiology,
V Ralevic, and G Burnstock
August 1997, The American journal of physiology,
V Ralevic, and G Burnstock
February 1989, European journal of pharmacology,
Copied contents to your clipboard!