Actions of general anaesthetics on 5-HT3 receptors in N1E-115 neuroblastoma cells. 1996

A Jenkins, and N P Franks, and W R Lieb
Biophysics Section, Blackett Laboratory, Imperial College of Science, Technology and Medicine, South Kensington, London.

1. NIE-115 mouse neuroblastoma cells were studied under voltage clamp in the whole-cell patch-clamp configuration. Peak currents induced by bath application of 5-hydroxytryptamine (5-HT) were inwardly rectifying, reversed at 0.4 +/- 0.2 mV (mean +/- s.e.mean), and were approximately half-inhibited (at 1 microM 5-HT) by 2 nM of the 5-HT3 selective antagonist MDL-72222 (3-tropanyl-3,5-dichlorobenzoate). 2. Peak inward currents activated by a low concentration of 5-HT at a holding potential of -50 mV were potentiated by volatile general anaesthetics. At their human minimum alveolar concentrations (MACs), the degree of potentiation increased in the order isoflurane < halothane < enflurane < methoxyflurane. Potentiation by methoxyflurane was independent of membrane potential in the range -70 mV to +40 mV. The reversal potential was the same in the presence and absence of methoxyflurane. 3. Methoxyflurane shifted the 5-HT dose-response curve to lower 5-HT concentrations, without significantly changing the Hill coefficient or maximum response. The EC50 concentration for 5-HT decreased from 1.86 +/- 0.02 microM to 1.07 +/- 0.11 microM (means +/- s.e.mean) due to the presence of 1 MAC (270 microM) methoxyflurane. 4. In contrast to the volatile anaesthetics, the barbiturate anaesthetic, thiopentone, inhibited the 5-HT3 receptor. Hill analysis of thiopentone dose-response data gave an average IC50 = 117 +/- 8 microM thiopentone and Hill coefficient = 1.6 +/- 0.2 (means +/- s.e.mean). These parameters were not significantly different for data obtained at 5-HT concentrations above and below the control EC50 concentration for 5-HT, consistent with non-competitive inhibition. 5. The n-alcohols occupied an intermediate position between the volatile and barbiturate anaesthetics. The lower alcohols (butanol and hexanol) potentiated 5-HT responses at low alcohol concentrations but inhibited them at high concentrations. In contrast, the higher alcohols (octanol, decanol, dodecanol, tridecanol, tetradecanol and pentadecanol) produced no potentiation, but only inhibition, at all alcohol concentrations. 6. Inhibition of the 5-HT3 receptor by the n-alcohols exhibited a cutoff in potency similar to those previously found for tadpoles, luciferase enzymes and a neuronal nicotinic acetylcholine receptor channel.

UI MeSH Term Description Entries
D008733 Methoxyflurane An inhalation anesthetic. Currently, methoxyflurane is rarely used for surgical, obstetric, or dental anesthesia. If so employed, it should be administered with NITROUS OXIDE to achieve a relatively light level of anesthesia, and a neuromuscular blocking agent given concurrently to obtain the desired degree of muscular relaxation. (From AMA Drug Evaluations Annual, 1994, p180) Methofluranum,Anecotan,Penthrane,Pentrane
D009447 Neuroblastoma A common neoplasm of early childhood arising from neural crest cells in the sympathetic nervous system, and characterized by diverse clinical behavior, ranging from spontaneous remission to rapid metastatic progression and death. This tumor is the most common intraabdominal malignancy of childhood, but it may also arise from thorax, neck, or rarely occur in the central nervous system. Histologic features include uniform round cells with hyperchromatic nuclei arranged in nests and separated by fibrovascular septa. Neuroblastomas may be associated with the opsoclonus-myoclonus syndrome. (From DeVita et al., Cancer: Principles and Practice of Oncology, 5th ed, pp2099-2101; Curr Opin Oncol 1998 Jan;10(1):43-51) Neuroblastomas
D011985 Receptors, Serotonin Cell-surface proteins that bind SEROTONIN and trigger intracellular changes which influence the behavior of cells. Several types of serotonin receptors have been recognized which differ in their pharmacology, molecular biology, and mode of action. 5-HT Receptor,5-HT Receptors,5-Hydroxytryptamine Receptor,5-Hydroxytryptamine Receptors,Receptors, Tryptamine,Serotonin Receptor,Serotonin Receptors,Tryptamine Receptor,Tryptamine Receptors,Receptors, 5-HT,Receptors, 5-Hydroxytryptamine,5 HT Receptor,5 HT Receptors,5 Hydroxytryptamine Receptor,5 Hydroxytryptamine Receptors,Receptor, 5-HT,Receptor, 5-Hydroxytryptamine,Receptor, Serotonin,Receptor, Tryptamine,Receptors, 5 HT,Receptors, 5 Hydroxytryptamine
D000438 Alcohols Alkyl compounds containing a hydroxyl group. They are classified according to relation of the carbon atom: primary alcohols, R-CH2OH; secondary alcohols, R2-CHOH; tertiary alcohols, R3-COH. (From Grant & Hackh's Chemical Dictionary, 5th ed)
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012701 Serotonin A biochemical messenger and regulator, synthesized from the essential amino acid L-TRYPTOPHAN. In humans it is found primarily in the central nervous system, gastrointestinal tract, and blood platelets. Serotonin mediates several important physiological functions including neurotransmission, gastrointestinal motility, hemostasis, and cardiovascular integrity. Multiple receptor families (RECEPTORS, SEROTONIN) explain the broad physiological actions and distribution of this biochemical mediator. 5-HT,5-Hydroxytryptamine,3-(2-Aminoethyl)-1H-indol-5-ol,Enteramine,Hippophaine,Hydroxytryptamine,5 Hydroxytryptamine
D013874 Thiopental A barbiturate that is administered intravenously for the induction of general anesthesia or for the production of complete anesthesia of short duration. Penthiobarbital,Thiomebumal,Thiopentobarbital,Bomathal,Nesdonal,Pentothal,Pentothal Sodico,Sodipental,Thionembutal,Thiopental Nycomed,Thiopental Sodium,Thiopentone,Tiobarbital Braun,Trapanal
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D044406 Receptors, Serotonin, 5-HT3 A subclass of serotonin receptors that form cation channels and mediate signal transduction by depolarizing the cell membrane. The cation channels are formed from 5 receptor subunits. When stimulated the receptors allow the selective passage of SODIUM; POTASSIUM; and CALCIUM. Serotonin 3 Receptor,5-HT3 Receptor,5-Hydroxytryptamine-3 Receptor,Receptor, Serotonin 3,Receptor, Serotonin, 5-HT3 Subunit A,Receptor, Serotonin, 5-HT3 Subunit B,Receptor, Serotonin, 5-HT3 Subunit C,Receptor, Serotonin, 5-HT3 Subunit D,Receptor, Serotonin, 5-HT3 Subunit E,Receptor, Serotonin, 5-HT3A,Receptor, Serotonin, 5-HT3B,Receptor, Serotonin, 5-HT3C,Receptor, Serotonin, 5-HT3D,Receptor, Serotonin, 5-HT3E,Serotonin 3 Receptors,5 HT3 Receptor,5 Hydroxytryptamine 3 Receptor,Receptor, 5-Hydroxytryptamine-3,Receptors, Serotonin 3
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

A Jenkins, and N P Franks, and W R Lieb
September 1990, European journal of pharmacology,
A Jenkins, and N P Franks, and W R Lieb
January 1994, Neuropharmacology,
A Jenkins, and N P Franks, and W R Lieb
September 1990, European journal of pharmacology,
A Jenkins, and N P Franks, and W R Lieb
June 1994, British journal of pharmacology,
A Jenkins, and N P Franks, and W R Lieb
October 1993, European journal of pharmacology,
A Jenkins, and N P Franks, and W R Lieb
July 1988, European journal of pharmacology,
A Jenkins, and N P Franks, and W R Lieb
March 1990, Neuroscience letters,
A Jenkins, and N P Franks, and W R Lieb
February 1994, Biochemical and biophysical research communications,
Copied contents to your clipboard!