Endothelin-1-induced potentiation of human airway smooth muscle proliferation: an ETA receptor-mediated phenomenon. 1996

R A Panettieri, and R G Goldie, and P J Rigby, and A J Eszterhas, and D W Hay
Department of Medicine, University of Pennsylvania School of Medicine, Hospital of the University of Pennsylvania, Philadelphia 19104-4283, USA.

1. In this study the mitogenic effects in human cultured tracheal smooth muscle cells of endothelin-1 (ET-1), ET-3, and sarafotoxin S6c (S6c), the ETB receptor-selective agonist, were explored either alone or in combination with the potent mitogen, epidermal growth factor (EGF). 2. In confluent, growth-arrested human airway smooth, neither ET-1 (0.01 nM-1 microM) nor ET-3 (0.001 nM-1 microM) or S6c (0.01 nM-1 microM) induced cell proliferation, as assessed by [3H]-thymidine incorporation. In contrast, EGF (1.6 pM-16 nM) produced concentration-dependent stimulation of DNA synthesis (EC50 of about 0.06 nM). The maximum increase of about 60 fold above control, elicited by 16 nM EGF, was similar to that obtained with 10% foetal bovine serum (FBS). EGF (0.16-16 nM) also produced a concentration-dependent increase in cell counts, whereas ET-1 (1-100 nM) was without effect on this index of mitogenesis. 3. ET-1 (1-100 nM) potentiated EGF-induced proliferation of human tracheal smooth muscle cells. For example, ET-1 (100 nM), which alone was without significant effect, increased by 3.0 to 3.5 fold the mitogenic influence of EGF (0.16 nM). The potentiating effect of ET-1 on EGF-induced proliferation was antagonized by BQ-123 (3 microM), the ETA receptor antagonist, but was unaffected by the ETB receptor antagonist BQ-788 (10 microM). 4. Neither ET-3 (1-100 nM) nor S6c (1-100 nM) influenced the mitogenic effects of EGF (0.16-1.6 nM). 5. [125I]-ET-1 binding studies revealed that on average the ratio of ETA to ETB receptors in human cultured tracheal smooth muscle cells was 35:65 ( +/- 3; n = 4), confirming the predominance of the ETB receptor subtype in human airway smooth muscle. 6. These data indicate that ET-1 alone does not induce significant human airway smooth muscle cell proliferation. However, it potently potentiated mitogenesis induced by EGF, apparently via an ETA receptor-mediated mechanism. These findings suggest that ET-1, a mediator detected in increased amounts in patients with acute asthma, may potentiate the proliferative effects of mitogens and contribute to the airway smooth muscle hyperplasia associated with chronic severe asthma.

UI MeSH Term Description Entries
D007457 Iodine Radioisotopes Unstable isotopes of iodine that decay or disintegrate emitting radiation. I atoms with atomic weights 117-139, except I 127, are radioactive iodine isotopes. Radioisotopes, Iodine
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D009842 Oligopeptides Peptides composed of between two and twelve amino acids. Oligopeptide
D010456 Peptides, Cyclic Peptides whose amino acid residues are linked together forming a circular chain. Some of them are ANTI-INFECTIVE AGENTS; some are biosynthesized non-ribosomally (PEPTIDE BIOSYNTHESIS, NON-RIBOSOMAL). Circular Peptide,Cyclic Peptide,Cyclic Peptides,Cyclopeptide,Orbitide,Circular Peptides,Cyclopeptides,Orbitides,Peptide, Circular,Peptide, Cyclic,Peptides, Circular
D010880 Piperidines A family of hexahydropyridines.
D002452 Cell Count The number of CELLS of a specific kind, usually measured per unit volume or area of sample. Cell Density,Cell Number,Cell Counts,Cell Densities,Cell Numbers,Count, Cell,Counts, Cell,Densities, Cell,Density, Cell,Number, Cell,Numbers, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA

Related Publications

R A Panettieri, and R G Goldie, and P J Rigby, and A J Eszterhas, and D W Hay
October 1993, American journal of respiratory cell and molecular biology,
R A Panettieri, and R G Goldie, and P J Rigby, and A J Eszterhas, and D W Hay
November 1995, British journal of pharmacology,
R A Panettieri, and R G Goldie, and P J Rigby, and A J Eszterhas, and D W Hay
January 1998, Pulmonary pharmacology & therapeutics,
R A Panettieri, and R G Goldie, and P J Rigby, and A J Eszterhas, and D W Hay
October 1995, European journal of pharmacology,
R A Panettieri, and R G Goldie, and P J Rigby, and A J Eszterhas, and D W Hay
July 1999, Circulation,
R A Panettieri, and R G Goldie, and P J Rigby, and A J Eszterhas, and D W Hay
November 2018, Molecular and cellular endocrinology,
R A Panettieri, and R G Goldie, and P J Rigby, and A J Eszterhas, and D W Hay
June 1999, The Journal of pharmacology and experimental therapeutics,
R A Panettieri, and R G Goldie, and P J Rigby, and A J Eszterhas, and D W Hay
April 2005, Chinese medical journal,
R A Panettieri, and R G Goldie, and P J Rigby, and A J Eszterhas, and D W Hay
August 2002, Clinical science (London, England : 1979),
Copied contents to your clipboard!