A pharmacokinetic-pharmacodynamic model of tolerance to morphine analgesia during infusion in rats. 1995

D M Ouellet, and G M Pollack
Division of Pharmaceutics, School of Pharmacy, University of North Carolina at Chapel Hill 27599-7360, USA.

A pharmacokinetic-pharmacodynamic (PK-PD) model was constructed to describe the kinetics of tolerance development to morphine-induced antinociception. Tail-flick latencies in response to hot water (50 degrees C) were assessed in male Sprague-Dawley rats exposed to a 12-hr iv infusion of either morphine (1.4 to 3.0 mg/kg per hr) or saline. Morphine-induced antinociception, expressed as the percentage of maximum possible response (% MPR), peaked after 120 min of infusion and decreased thereafter despite sustained systemic morphine concentrations. Both the rate and extent of tolerance development increased with increasing concentrations; an overall residual effect of approximately 24% MPR was observed at the end of the infusion regardless of the steady-state morphine concentration. The kinetics of tolerance offset were examined in a separate experiment by assessing tail-flick latency 15 min after morphine iv bolus (2 mg/kg) in tolerant and control rats. Recovery of response neared completion 18.5 days after a 12-hr exposure to morphine (2.0 mg/kg per hr). A PK-PD model was constructed to account for the delay in onset of antinociceptive effect and tolerance development relative to the blood concentration-time profile. According to this model, both the extent and the rate of tolerance development were modulated by the kinetics of the drug in the central compartment. Accumulation of a hypothetical "inhibitor" acting either as a reverse agonist, a competitive or noncompetitive antagonist, or a partial agonist could potentially account for the loss of pharmacologic effect in the presence of an agonist. The rate of tolerance development predicted from the PK-PD model varied widely (28-fold) depending on the type of pharmacologic interaction selected to account for the loss of effect. Using the rate of tolerance offset to discriminate between the different models (t1/2 offset 5.4 days), onset and offset of tolerance was described accurately by postulating that the inhibitor behaves as a partial agonist with low intrinsic activity (5.5% MPR) and high binding affinity for the receptor (IC50 15.0 ng/ml).

UI MeSH Term Description Entries
D008297 Male Males
D009020 Morphine The principal alkaloid in opium and the prototype opiate analgesic and narcotic. Morphine has widespread effects in the central nervous system and on smooth muscle. Morphine Sulfate,Duramorph,MS Contin,Morphia,Morphine Chloride,Morphine Sulfate (2:1), Anhydrous,Morphine Sulfate (2:1), Pentahydrate,Oramorph SR,SDZ 202-250,SDZ202-250,Chloride, Morphine,Contin, MS,SDZ 202 250,SDZ 202250,SDZ202 250,SDZ202250,Sulfate, Morphine
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D004361 Drug Tolerance Progressive diminution of the susceptibility of a human or animal to the effects of a drug, resulting from its continued administration. It should be differentiated from DRUG RESISTANCE wherein an organism, disease, or tissue fails to respond to the intended effectiveness of a chemical or drug. It should also be differentiated from MAXIMUM TOLERATED DOSE and NO-OBSERVED-ADVERSE-EFFECT LEVEL. Drug Tolerances,Tolerance, Drug,Tolerances, Drug
D000698 Analgesia Methods of PAIN relief that may be used with or in place of ANALGESICS. Analgesias
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

D M Ouellet, and G M Pollack
January 2011, Clinical neuropharmacology,
D M Ouellet, and G M Pollack
January 1998, Pharmacology, biochemistry, and behavior,
D M Ouellet, and G M Pollack
January 1973, Acta pharmacologica et toxicologica,
D M Ouellet, and G M Pollack
April 1984, Pharmacology, biochemistry, and behavior,
Copied contents to your clipboard!