Mechanical actions of heterogenic reflexes among ankle stabilizers and their interactions with plantarflexors of the cat hindlimb. 1996

S J Bonasera, and T R Nichols
Department of Physiology, Emory University, Atlanta, Georgia 30322, USA.

1. The stretch-evoked reflex organization of muscles whose major action is to abduct [peroneus brevis (PB); peroneus longus (PL)] and adduct [tibialis posterior (TP); flexor digitorum longus (FDL); flexor hallucis longus (FHL)] the ankle, and their interactions with the hindlimb extensors gastrocnemius (G) and soleus (S), were studied in 27 unanesthetized decerebrate cats. Ramp-hold-release stretches of physiological amplitudes were applied to muscle tendons detached from their bony insertion, and muscle force output was measured in response to these perturbations. Flexion and crossed-extension reflexes were used to modulate baseline force. 2. PB and TP shared strong, length-dependent, short-latency inhibitory reflexes prominent when the muscles were either actively generating force or quiescent. The mechanical characteristics of this reflex suggest Ia reciprocal inhibition as the underlying mechanism. Just as reciprocal inhibition between S and tibialis anterior stiffens the ankle joint against sagittal perturbations, we propose that reciprocal inhibition between PB and TP stiffens the ankle joint against nonsagittal perturbations. 3. In all preparations (n = 7) and under all conditions examined, PB and PL shared well-demonstrated mutual excitation. The reflex responses were asymmetric (favoring excitation of PL), length dependent, and occurred simultaneously with the stretch reflex at a latency of 16-18 ms. Mutual monosynaptic projections previously described between these two muscles explain all of the above findings. Our data further demonstrate that, under certain conditions, the ensemble activity of this reflex interaction has a powerful effect on the mechanical behavior of the muscle. 4. The heterogenic reflex organization of the ankle adductors was as follows: FDL evoked a modest excitation on TP, whereas FHL evoked weak inhibition. Latency of the excitation from FDL onto TP (24 ms) was greater than expected if the reflex were mediated by heteronymous Ia afferents. In all preparations examined (n = 3), TP contributed no significant reflexes onto either FDL or FHL. 5. Mutual, asymmetric inhibition characterized interactions between PB and the plantarflexors S and G. Most remarkable was a novel, long-latency (72-74 ms) reflex inhibition evoked on both S and G by stretch of PB. When this inhibition occurred, it dramatically decreased the S (or G) stretch response. Longer PB lengths evoked greater inhibition of isometric S; regression analysis indicated that the model best predicting this inhibition contained muscle force and stiffness terms. No long-latency reflexes were noted from either G or S onto PB. The mechanism underlying long-latency inhibition is presently unknown; however, features of this interaction suggest interneurons receive either group II or group III afferent input. 6. G and TP shared short latency, mutually inhibitory, asymmetric reflexes favoring inhibition of TP. No long-latency interactions were noted, nor were there any mechanically significant interactions between S and TP. 7. Reflex interactions across the abduction/adduction axis thus favored inhibition of plantarflexion and adduction torques while emphasizing abduction torques: PB/S (or PB/G) interactions were mutual, asymmetric, and favored inhibition of G and S; TP/G interactions were mutual, asymmetric, and favored inhibition of TP; TP/PB interactions were approximately balanced. The overall mechanical outcome of these inhibitory interactions may partly underlie the global corrective strategy seen in intact cats subjected to linear perturbations. 8. No significant reflex interactions were demonstrated between PL and TP, G, or S, nor were any long-latency reflexes noted. Thus, whereas reflex interactions between the stereotypically activated PB and other stereotypically activated muscles (including TP, G, and S) were strong and well-demonstrated, interactions between the variably activated PL and these same muscles were far weaker.

UI MeSH Term Description Entries
D007537 Isometric Contraction Muscular contractions characterized by increase in tension without change in length. Contraction, Isometric,Contractions, Isometric,Isometric Contractions
D008297 Male Males
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D012023 Reflex, Monosynaptic A reflex in which the AFFERENT NEURONS synapse directly on the EFFERENT NEURONS, without any INTERCALATED NEURONS. (Lockard, Desk Reference for Neuroscience, 2nd ed.) Monosynaptic Reflex
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D005260 Female Females
D006614 Hindlimb Either of two extremities of four-footed non-primate land animals. It usually consists of a FEMUR; TIBIA; and FIBULA; tarsals; METATARSALS; and TOES. (From Storer et al., General Zoology, 6th ed, p73) Hindlimbs
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001696 Biomechanical Phenomena The properties, processes, and behavior of biological systems under the action of mechanical forces. Biomechanics,Kinematics,Biomechanic Phenomena,Mechanobiological Phenomena,Biomechanic,Biomechanic Phenomenas,Phenomena, Biomechanic,Phenomena, Biomechanical,Phenomena, Mechanobiological,Phenomenas, Biomechanic

Related Publications

S J Bonasera, and T R Nichols
October 1987, Journal of neuroscience methods,
S J Bonasera, and T R Nichols
February 1999, Journal of neurophysiology,
S J Bonasera, and T R Nichols
October 2003, Journal of neurophysiology,
S J Bonasera, and T R Nichols
January 1976, The Journal of pharmacology and experimental therapeutics,
S J Bonasera, and T R Nichols
January 2009, Journal of neurophysiology,
S J Bonasera, and T R Nichols
January 1985, Experimental brain research,
S J Bonasera, and T R Nichols
July 1985, Neuroscience letters,
Copied contents to your clipboard!