| D007621 |
Karyotyping |
Mapping of the KARYOTYPE of a cell. |
Karyotype Analysis Methods,Analysis Method, Karyotype,Analysis Methods, Karyotype,Karyotype Analysis Method,Karyotypings,Method, Karyotype Analysis,Methods, Karyotype Analysis |
|
| D009519 |
New York City |
City located at the mouth of the Hudson River, in New York State. |
|
|
| D003453 |
Cryptococcosis |
Fungal infection caused by genus CRYPTOCOCCUS. |
C gattii Infection,C neoformans Infection,C. gattii Infection,C. neoformans Infection,Cryptococcus Infection,Cryptococcus Infections,Cryptococcus gattii Infection,Torulosis,Cryptococcus neoformans Infection,C gattii Infections,C neoformans Infections,C. gattii Infections,C. neoformans Infections,Cryptococcoses,Cryptococcus gattii Infections,Cryptococcus neoformans Infections,Infection, C gattii,Infection, C neoformans,Infection, C. gattii,Infection, C. neoformans,Infection, Cryptococcus,Infection, Cryptococcus gattii,Infection, Cryptococcus neoformans,Infections, C gattii,Infections, C. neoformans,Toruloses |
|
| D003455 |
Cryptococcus neoformans |
A species of the fungus CRYPTOCOCCUS. Its teleomorph is Filobasidiella neoformans. |
Blastomyces neoformans,Debaryomyces neoformans,Filobasidiella neoformans,Lipomyces neoformans,Saccharomyces neoformans,Torula neoformans,Torulopsis neoformans,Cryptococcus neoformans var. grubii |
|
| D004271 |
DNA, Fungal |
Deoxyribonucleic acid that makes up the genetic material of fungi. |
Fungal DNA |
|
| D006801 |
Humans |
Members of the species Homo sapiens. |
Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man |
|
| D000818 |
Animals |
Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. |
Animal,Metazoa,Animalia |
|
| D016521 |
Electrophoresis, Gel, Pulsed-Field |
Gel electrophoresis in which the direction of the electric field is changed periodically. This technique is similar to other electrophoretic methods normally used to separate double-stranded DNA molecules ranging in size up to tens of thousands of base-pairs. However, by alternating the electric field direction one is able to separate DNA molecules up to several million base-pairs in length. |
Electrophoresis, Gel, Pulsed-Field Gradient,Gel Electrophoresis, Pulsed-Field,Contour-Clamped Homogeneous-Field Gel Electrophoresis,Electrophoresis, Gel, Pulsed Field,Electrophoresis, Pulsed Field Gel,Field Inversion Gel Electrophoresis,Orthogonal Field Alternation Gel Electrophoresis,Orthogonal-Field Alternation-Gel Electrophoresis,Pulsed Field Gradient Gel Electrophoresis,Pulsed-Field Gel Electrophoresis,Pulsed-Field Gradient Gel Electrophoresis,Alternation-Gel Electrophoresis, Orthogonal-Field,Contour Clamped Homogeneous Field Gel Electrophoresis,Electrophoresis, Orthogonal-Field Alternation-Gel,Electrophoresis, Pulsed-Field Gel,Gel Electrophoresis, Pulsed Field,Pulsed Field Gel Electrophoresis |
|
| D017088 |
AIDS-Related Opportunistic Infections |
Opportunistic infections found in patients who test positive for human immunodeficiency virus (HIV). The most common include PNEUMOCYSTIS PNEUMONIA, Kaposi's sarcoma, cryptosporidiosis, herpes simplex, toxoplasmosis, cryptococcosis, and infections with Mycobacterium avium complex, Microsporidium, and Cytomegalovirus. |
HIV-Related Opportunistic Infections,Opportunistic Infections, AIDS-Related,Opportunistic Infections, HIV-Related,AIDS Related Opportunistic Infections,AIDS-Related Opportunistic Infection,HIV Related Opportunistic Infections,HIV-Related Opportunistic Infection,Infection, HIV-Related Opportunistic,Infections, HIV-Related Opportunistic,Opportunistic Infection, AIDS-Related,Opportunistic Infection, HIV-Related,Opportunistic Infections, AIDS Related,Opportunistic Infections, HIV Related |
|
| D017720 |
Molecular Epidemiology |
The application of molecular biology to the answering of epidemiological questions. The examination of patterns of changes in DNA to implicate particular carcinogens and the use of molecular markers to predict which individuals are at highest risk for a disease are common examples. |
Epidemiology, Molecular,Genetic Epidemiology,Epidemiologies, Genetic,Epidemiologies, Molecular,Epidemiology, Genetic,Genetic Epidemiologies,Molecular Epidemiologies |
|