Burst-generating neurones in the dorsal horn in an in vitro preparation of the turtle spinal cord. 1996

R E Russo, and J Hounsgaard
Department of Medical Physiology, Panum Institute, University of Copenhagen, Denmark.

1. In transverse slices of the spinal cord of the turtle, intracellular recordings were used to characterize and analyse the responses to injected current and activation of primary afferents in dorsal horn neurones. 2. A subpopulation of neurones, with cell bodies located centrally in the dorsal horn, was distinguished by the ability to generate a burst response following a hyperpolarization from rest or during a depolarization from a hyperpolarized holding potential. The burst response was inactivated at the resting membrane potential. 3. The burst response was mediated by a low threshold Ca2+ spike assumed to be mediated by T-type Ca2+ channels since it resisted tetrodotoxin and was blocked by 3 mM Co2+ or 100-300 microM Ni2+ and resembled the low threshold spike (LTS) described elsewhere. 4. Some burst-generating cells also displayed plateau potentials mediated by L-type Ca2+ channels. In these cells the burst following a hyperpolarizing current pulse, applied from the resting membrane potential, facilitated the activation of the plateau potential. Wind-up of the plateau potential was produced when the hyperpolarizing pulse generating the burst was repeated at 0.1-0.3 Hz or faster. 5. The burst response and the underlying low threshold Ca2+ spike were activated synaptically by primary afferent stimuli in a voltage range hyperpolarized from the resting membrane potential. 6. Cells with bursts were morphologically distinguishable from cells with bursts and plateau properties. 7. Our findings in this and the preceding paper show that the intrinsic response properties of particular subtypes of neurones in the dorsal horn have a profound influence on the amplitude and time course of the responses mediated by primary afferent fibres. We predict that these postsynaptic properties are probable targets for synaptic modulation.

UI MeSH Term Description Entries
D008239 Lysine An essential amino acid. It is often added to animal feed. Enisyl,L-Lysine,Lysine Acetate,Lysine Hydrochloride,Acetate, Lysine,L Lysine
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009532 Nickel A trace element with the atomic symbol Ni, atomic number 28, and atomic weight 58.69. It is a cofactor of the enzyme UREASE.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

R E Russo, and J Hounsgaard
November 1978, Brain research,
R E Russo, and J Hounsgaard
January 1973, Anesthesiology,
R E Russo, and J Hounsgaard
January 1989, British journal of pharmacology,
R E Russo, and J Hounsgaard
December 1983, The Journal of comparative neurology,
R E Russo, and J Hounsgaard
July 1981, Quarterly journal of experimental physiology (Cambridge, England),
R E Russo, and J Hounsgaard
March 2007, British journal of anaesthesia,
Copied contents to your clipboard!