G proteins in adipocytes and preadipocytes: characterization, subcellular distribution, and potential roles for Gi2 and/or Gi3 in the control of cell proliferation. 1996

D Denis-Henriot, and P de Mazancourt, and P K Goldsmith, and Y Giudicelli
Laboratoire de Biochimie de la Faculté de Médecine Paris-Quest, INSERM CJF 94-02, Université René Descartes Paris V, Hôpital de Poissy, Poissy, France.

Guanosine triphosphate (GTP)-binding protein subunits were studied by immunoblot analysis in particulate fractions from mature adipocytes, confluent preadipocytes, and in vitro-differentiated preadipocytes. Mature adipocytes express Gi alpha 1, Gi alpha 2, Gi alpha 3, Go alpha, Gq/11 alpha, G13 alpha and the long and short isoforms of Gs alpha, but no Gz alpha or G12 alpha. Confluent and differentiated preadipocytes differ in having a higher content of Gi alpha 3 and G13 alpha and expressing G12 alpha. In contrast, they lack Gi alpha 1, Go alpha, and the short from of Gs alpha. The G-protein alpha subunits Gi alpha 2, Gs alpha (long isoform), and Gq/11 alpha, and G-protein beta subunits were unchanged throughout the differentiation process. By immunoblot and indirect immunofluorescence studies on confluent preadipocytes, we showed that Gi alpha 2 is present in the endoplasmic reticulum and marginally in plasma membranes and nuclei. In contrast, antibodies to Gi alpha 3 stained the Golgi apparatus. The role of G proteins on preadipocyte proliferation was studied using Bordetella pertussis toxin. Exposure of growing cells to this toxin in the presence of fetal calf serum (FCS) decreased [3H]thymidine incorporation by 40% and induced a 40% increase in doubling time. This resulted in a 30% decrease in cell number per well after 48 h. These effects of B. pertussis toxin did not appear to be related to an increase in cyclic adenosine monophosphate (cAMP) concentration, because forskolin had the opposite effect on cell proliferation. Finally, B. pertussis toxin prevented serum-induced Raf1 association to the plasma membrane, possibly by disrupting FCS-induced G beta gamma effects on the Ras/Raf1 pathway. Since Go alpha and Gi alpha 1 subunits were absent in preadipocytes, we conclude that Gi2 and/or Gi3 proteins transduce some mitogenic signals of FCS through release of G beta gamma subunits. The subcellular distribution of Gi alpha 2 and Gi alpha 3 suggests that part of their functions result from interactions with components other than the plasma membrane.

UI MeSH Term Description Entries
D008297 Male Males
D010566 Virulence Factors, Bordetella A set of BACTERIAL ADHESINS and TOXINS, BIOLOGICAL produced by BORDETELLA organisms that determine the pathogenesis of BORDETELLA INFECTIONS, such as WHOOPING COUGH. They include filamentous hemagglutinin; FIMBRIAE PROTEINS; pertactin; PERTUSSIS TOXIN; ADENYLATE CYCLASE TOXIN; dermonecrotic toxin; tracheal cytotoxin; Bordetella LIPOPOLYSACCHARIDES; and tracheal colonization factor. Bordetella Virulence Factors,Agglutinogen 2, Bordetella Pertussis,Bordetella Virulence Determinant,LFP-Hemagglutinin,LP-HA,Leukocytosis-Promoting Factor Hemagglutinin,Lymphocytosis-Promoting Factor-Hemagglutinin,Pertussis Agglutinins,Agglutinins, Pertussis,Determinant, Bordetella Virulence,Factor Hemagglutinin, Leukocytosis-Promoting,Factor-Hemagglutinin, Lymphocytosis-Promoting,Factors, Bordetella Virulence,Hemagglutinin, Leukocytosis-Promoting Factor,LFP Hemagglutinin,LP HA,Leukocytosis Promoting Factor Hemagglutinin,Lymphocytosis Promoting Factor Hemagglutinin,Virulence Determinant, Bordetella
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013347 Subcellular Fractions Components of a cell produced by various separation techniques which, though they disrupt the delicate anatomy of a cell, preserve the structure and physiology of its functioning constituents for biochemical and ultrastructural analysis. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p163) Fraction, Subcellular,Fractions, Subcellular,Subcellular Fraction
D015151 Immunoblotting Immunologic method used for detecting or quantifying immunoreactive substances. The substance is identified by first immobilizing it by blotting onto a membrane and then tagging it with labeled antibodies. Dot Immunoblotting,Electroimmunoblotting,Immunoelectroblotting,Reverse Immunoblotting,Immunoblotting, Dot,Immunoblotting, Reverse,Dot Immunoblottings,Electroimmunoblottings,Immunoblottings,Immunoblottings, Dot,Immunoblottings, Reverse,Immunoelectroblottings,Reverse Immunoblottings
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D017667 Adipocytes Cells in the body that store FATS, usually in the form of TRIGLYCERIDES. WHITE ADIPOCYTES are the predominant type and found mostly in the abdominal cavity and subcutaneous tissue. BROWN ADIPOCYTES are thermogenic cells that can be found in newborns of some species and hibernating mammals. Fat Cells,Lipocytes,Adipocyte,Cell, Fat,Cells, Fat,Fat Cell,Lipocyte
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

D Denis-Henriot, and P de Mazancourt, and P K Goldsmith, and Y Giudicelli
May 1997, Journal of cellular biochemistry,
D Denis-Henriot, and P de Mazancourt, and P K Goldsmith, and Y Giudicelli
January 1991, FEBS letters,
D Denis-Henriot, and P de Mazancourt, and P K Goldsmith, and Y Giudicelli
April 1995, Diabetes,
D Denis-Henriot, and P de Mazancourt, and P K Goldsmith, and Y Giudicelli
September 1990, The Biochemical journal,
D Denis-Henriot, and P de Mazancourt, and P K Goldsmith, and Y Giudicelli
January 1996, Journal of cellular biochemistry,
D Denis-Henriot, and P de Mazancourt, and P K Goldsmith, and Y Giudicelli
January 1989, Brain research,
D Denis-Henriot, and P de Mazancourt, and P K Goldsmith, and Y Giudicelli
May 1990, Journal of biochemistry,
D Denis-Henriot, and P de Mazancourt, and P K Goldsmith, and Y Giudicelli
July 1990, The Biochemical journal,
D Denis-Henriot, and P de Mazancourt, and P K Goldsmith, and Y Giudicelli
October 2010, Experimental biology and medicine (Maywood, N.J.),
D Denis-Henriot, and P de Mazancourt, and P K Goldsmith, and Y Giudicelli
May 2007, Biochemical and biophysical research communications,
Copied contents to your clipboard!