Effects of neurotensin on visual neurons in the superficial laminae of the hamster's superior colliculus. 1996

Y Zhang, and R D Mooney, and C A Bennett-Clarke, and R W Rhoades
Department of Anatomy and Neurobiology, Medical College of Ohio, Toledo 43699, USA.

Autoradiography with 125I-neurotensin in normal and enucleated hamsters was used to define the distribution of receptors for this peptide in the superficial layers of the superior colliculus (SC). Neurotensin binding sites were densely distributed in the stratum griseum superficiale (SGS), and results from the enucleated animals indicated that they were not located on retinal axons. The effects of neurotensin on individual superficial layer cells were tested in single-unit recording experiments. Neurotensin was delivered via micropressure ejection during visual stimulation (n = 75 cells), or during electrical stimulation of either the optic chiasm (OX; n = 47 cells) or visual cortex (CTX; n = 29 cells). In comparison with control values, application of neurotensin decreased visual responses of all SC cells tested to 54.1 +/- 34.9% (mean +/- standard deviation; range of decrement 7.5 to 100%; nine cells showed no effect or an increase in visual activity, which for four of these was > or = 30%). Neurotensin application also reduced responses to electrical stimulation of either OX or CTX, respectively, to 65.8 +/- 36.5% of control values (range of decrement 2.6 to 97.4%; 12 neurons showed a weak increment < or = 30%) and 68.0 +/- 38.5% (range of decrement 3.3 to 100%; five cells showed no effect or an increment, in one case > or = 30%). Of the 25 neurons tested with both OX and CTX stimulation, the correlation of evoked response suppression by neurotensin was highly significant (r = 0.70; P < 0.001). This suggests that the suppressive effects of neurotensin were common to both pathways. To test whether the inhibitory effects of neurotensin were presynaptic or postsynaptic, Mg2+ ions were ejected iontophoretically to abolish synaptic responses, and the neurons (n = 16) were activated by iontophoresis of glutamate and then tested with neurotensin. Neurotensin reduced the glutamate-evoked responses to an average 59.3 +/- 37.9% of control values (range 2.3 to 92.5%; one cell showed an increment > 30%). This result suggests that the site of action of neurotensin is most likely postsynaptic.

UI MeSH Term Description Entries
D008297 Male Males
D009496 Neurotensin A biologically active tridecapeptide isolated from the hypothalamus. It has been shown to induce hypotension in the rat, to stimulate contraction of guinea pig ileum and rat uterus, and to cause relaxation of rat duodenum. There is also evidence that it acts as both a peripheral and a central nervous system neurotransmitter.
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005074 Evoked Potentials, Visual The electric response evoked in the cerebral cortex by visual stimulation or stimulation of the visual pathways. Visual Evoked Response,Evoked Potential, Visual,Evoked Response, Visual,Evoked Responses, Visual,Potential, Visual Evoked,Potentials, Visual Evoked,Response, Visual Evoked,Responses, Visual Evoked,Visual Evoked Potential,Visual Evoked Potentials,Visual Evoked Responses
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013477 Superior Colliculi The anterior pair of the quadrigeminal bodies which coordinate the general behavioral orienting responses to visual stimuli, such as whole-body turning, and reaching. Colliculus, Superior,Optic Lobe, Human,Optic Lobe, Mammalian,Optic Tectum,Anterior Colliculus,Superior Colliculus,Tectum, Optic,Colliculi, Superior,Colliculus, Anterior,Human Optic Lobe,Human Optic Lobes,Mammalian Optic Lobe,Mammalian Optic Lobes,Optic Lobes, Human,Optic Lobes, Mammalian,Optic Tectums,Tectums, Optic
D014795 Visual Pathways Set of cell bodies and nerve fibers conducting impulses from the eyes to the cerebral cortex. It includes the RETINA; OPTIC NERVE; optic tract; and geniculocalcarine tract. Pathway, Visual,Pathways, Visual,Visual Pathway
D018028 Receptors, Neurotensin Cell surface proteins that bind neurotensin with high affinity and trigger intracellular changes which influence the behavior of cells. Neurotensin and neurotensin receptors are found in the central nervous system and in the periphery. Neurotensin Receptors,Neurotensin Receptor,Receptor, Neurotensin
D018698 Glutamic Acid A non-essential amino acid naturally occurring in the L-form. Glutamic acid is the most common excitatory neurotransmitter in the CENTRAL NERVOUS SYSTEM. Aluminum L-Glutamate,Glutamate,Potassium Glutamate,D-Glutamate,Glutamic Acid, (D)-Isomer,L-Glutamate,L-Glutamic Acid,Aluminum L Glutamate,D Glutamate,Glutamate, Potassium,L Glutamate,L Glutamic Acid,L-Glutamate, Aluminum

Related Publications

Y Zhang, and R D Mooney, and C A Bennett-Clarke, and R W Rhoades
November 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Y Zhang, and R D Mooney, and C A Bennett-Clarke, and R W Rhoades
April 1977, Brain research,
Y Zhang, and R D Mooney, and C A Bennett-Clarke, and R W Rhoades
July 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Y Zhang, and R D Mooney, and C A Bennett-Clarke, and R W Rhoades
January 1991, Experimental brain research,
Y Zhang, and R D Mooney, and C A Bennett-Clarke, and R W Rhoades
February 1987, Neuroscience,
Y Zhang, and R D Mooney, and C A Bennett-Clarke, and R W Rhoades
September 1977, The Journal of physiology,
Y Zhang, and R D Mooney, and C A Bennett-Clarke, and R W Rhoades
December 2010, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Y Zhang, and R D Mooney, and C A Bennett-Clarke, and R W Rhoades
January 1992, The Journal of comparative neurology,
Y Zhang, and R D Mooney, and C A Bennett-Clarke, and R W Rhoades
September 1994, Synapse (New York, N.Y.),
Copied contents to your clipboard!