Maximal muscle power output in cycling: a modelling approach. 1996

Y Yoshihuku, and W Herzog
Department of Natural Sciences, College of Engineering, Chubu University, Aichi, Japan.

This study sought to find the optimal design parameters for a bicycle-rider system (crank length, pelvic inclination, seat height and rate of crank rotation) that maximise the power output from muscles of the human lower limb during cycling. The human lower limb was modelled as a planar system of five rigid bodies connected by four frictionless pin joints and driven by seven functional muscle groups. The muscles were assumed to behave according to an adapted form of Hill's (1938) equation, incorporating the muscle force-length relation. The force-length relation and the values of length that served as input into the relations of the various muscles were defined in the following two ways: (1) the force-length relation was parabolic, based on the experiment of Woittiez et al. (1984), and the length was defined as the whole muscle length; and (2) the force-length relation was expressed as a combination of lines, based on the cross-bridge theory, and the length was defined as muscle fibre length. In the second definition, the joint configurations at which four of the seven muscle groups reached optimal length (i.e. the length at which the muscle can exert maximal isometric force) were further given in two ways. The first way was consistent with a previous study from this laboratory (Yoshihuku and Herzog, 1990); the second way relied on unpublished experimental data. The dependence of the average power on the design parameters and definitions of the force-length relation and muscle length was examined. Maximal average power for one full crank rotation with a crank length of 0.17 m was found to be about 1300 W for definition 1 and 1000 W for definition 2. The average power was more sensitive to changes in design parameters in definition 2 than definition 1. The optimal rate of crank rotation with a crank length of 0.17 m was 18.4 rad s-1 (176 rev min-1) for definition 1 (this value is different from the result of the previous study due to revisions in input for two muscle groups), and 15.2 rad s-1 (145 rev min-1) and 14.6 rad s-1 (139 rev min-1) for definition 2.

UI MeSH Term Description Entries
D007866 Leg The inferior part of the lower extremity between the KNEE and the ANKLE. Legs
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001642 Bicycling The use of a bicycle for transportation or recreation. It does not include the use of a bicycle in studying the body's response to physical exertion (BICYCLE ERGOMETRY TEST see EXERCISE TEST).
D001696 Biomechanical Phenomena The properties, processes, and behavior of biological systems under the action of mechanical forces. Biomechanics,Kinematics,Biomechanic Phenomena,Mechanobiological Phenomena,Biomechanic,Biomechanic Phenomenas,Phenomena, Biomechanic,Phenomena, Biomechanical,Phenomena, Mechanobiological,Phenomenas, Biomechanic
D018482 Muscle, Skeletal A subtype of striated muscle, attached by TENDONS to the SKELETON. Skeletal muscles are innervated and their movement can be consciously controlled. They are also called voluntary muscles. Anterior Tibial Muscle,Gastrocnemius Muscle,Muscle, Voluntary,Plantaris Muscle,Skeletal Muscle,Soleus Muscle,Muscle, Anterior Tibial,Muscle, Gastrocnemius,Muscle, Plantaris,Muscle, Soleus,Muscles, Skeletal,Muscles, Voluntary,Skeletal Muscles,Tibial Muscle, Anterior,Voluntary Muscle,Voluntary Muscles

Related Publications

Y Yoshihuku, and W Herzog
July 1983, Journal of applied physiology: respiratory, environmental and exercise physiology,
Y Yoshihuku, and W Herzog
November 2022, International journal of sports physiology and performance,
Y Yoshihuku, and W Herzog
January 1995, The Journal of physiology,
Y Yoshihuku, and W Herzog
November 2003, Journal of strength and conditioning research,
Y Yoshihuku, and W Herzog
July 2010, European journal of applied physiology,
Y Yoshihuku, and W Herzog
August 2021, Journal of biomechanics,
Y Yoshihuku, and W Herzog
January 1996, European journal of applied physiology and occupational physiology,
Y Yoshihuku, and W Herzog
July 2014, Neuroscience letters,
Y Yoshihuku, and W Herzog
October 1988, Medicine and science in sports and exercise,
Y Yoshihuku, and W Herzog
January 1986, European journal of applied physiology and occupational physiology,
Copied contents to your clipboard!