This review focuses on the more recent findings of the structure of sympathetic postganglionic axons and the association of their varicose terminals with vascular smooth muscle. These studies have investigated the innervation of a wide range of vessels from different regions of the vasculature in the rat, guinea pig and rabbit and have predominantly used serial sections and computerised three-dimensional reconstructions of entire varicosities. They have shown, contrary to previous studies conducted in the 1960s and 1970s, that sympathetic axon varicosities commonly form structurally specialised neuromuscular junctions with vascular smooth muscle cells of most resistance arteries and some small veins. In addition, they have shown that most axon varicosities innervating small arterioles and small mesenteric veins form neuromuscular junctions, indicating that neurotransmitter is primarily released at such neuromuscular junctions. This review discusses the structure of sympathetic neuromuscular junctions, their development, structural diversity and distribution on vessels from different regions of the vasculature. These more recent structural findings and their possible significance for our understanding of mechanisms involved in neural transmission in blood vessels is discussed.