Growth, proliferation, and cell death in the ontogeny of transient DRG (Froriep's ganglia) of chick embryos. 1996

O Rosen, and R Geffen, and C Avivi, and R S Goldstein
Department of Life Sciences, Bar Ilan University, Ramat Gan, Israel.

A striking example of axial patterning in nervous system development is the unusual fate of dorsal root ganglia (DRG) that develop in the most rostral somites, the Froriep's ganglia. In amniotes, the DRG that develop adjacent to the occipital (cranial) and the first cervical segments of the CNS "disappear" early in embryonic development. In contrast, all other DRG are present throughout the animal's life. We here reexamine in greater detail the ontogeny of the longest surviving Froriep's ganglion of the chick embryo, DRG C-2. By 50 h of development (stage, st. 15), an anlagen of a DRG had formed in C-2 that was indistinguishable from those of adjacent "permanent" ganglia. At st. 18 [embryonic day (E) 2.5+], the C-2 DRG had the same shape and volume as permanent ganglia C-5 and C-6. C-2's development first diverged from that of normal DRG at st. 19 (E3-), when C-2 was observed to be half the size and shaped differently from its neighbors, and its peripheral nerve root began to degenerate. Two cellular mechanisms appear to contribute to the reduced size of C-2 compared to normal DRG at st. 20 at this early stage: lower proliferation and higher apoptosis rates. One-third fewer C-2 cells were found to be in the S phase when compared to neighboring ganglia, and apoptotic cells were more than three times more abundant in C-2 than in conventional DRG at this stage. The C-2 DRG continued to grow, but at a slower pace than neighboring ganglia through st. 32 (E7). At the height of the normal programmed DRG cell death in normal cervical DRG at st. 28 (E6), even more massive apoptosis occurred in C-2, which resulted in the absence of this ganglion in 80% of st. 36 (E10) embryos. A recent study demonstrated that the overexpression of a single Hox gene can "rescue" the C-2 DRG in transgenic mice. We speculate that Hox genes may produce the difference in fate between C-2 and normal DRG by modulating proliferation and apoptosis via modified neurotrophic factor and/or receptor expression.

UI MeSH Term Description Entries
D007124 Immunoenzyme Techniques Immunologic techniques based on the use of: (1) enzyme-antibody conjugates; (2) enzyme-antigen conjugates; (3) antienzyme antibody followed by its homologous enzyme; or (4) enzyme-antienzyme complexes. These are used histologically for visualizing or labeling tissue specimens. Antibody Enzyme Technique, Unlabeled,Enzyme Immunoassay,Enzyme-Labeled Antibody Technique,Immunoassay, Enzyme,Immunoperoxidase Techniques,Peroxidase-Antiperoxidase Complex Technique,Peroxidase-Labeled Antibody Technique,Antibody Enzyme Technic, Unlabeled,Enzyme-Labeled Antibody Technic,Immunoenzyme Technics,Immunoperoxidase Technics,Peroxidase-Antiperoxidase Complex Technic,Peroxidase-Labeled Antibody Technic,Antibody Technic, Enzyme-Labeled,Antibody Technic, Peroxidase-Labeled,Antibody Technics, Enzyme-Labeled,Antibody Technics, Peroxidase-Labeled,Antibody Technique, Enzyme-Labeled,Antibody Technique, Peroxidase-Labeled,Antibody Techniques, Enzyme-Labeled,Antibody Techniques, Peroxidase-Labeled,Enzyme Immunoassays,Enzyme Labeled Antibody Technic,Enzyme Labeled Antibody Technique,Enzyme-Labeled Antibody Technics,Enzyme-Labeled Antibody Techniques,Immunoassays, Enzyme,Immunoenzyme Technic,Immunoenzyme Technique,Immunoperoxidase Technic,Immunoperoxidase Technique,Peroxidase Antiperoxidase Complex Technic,Peroxidase Antiperoxidase Complex Technique,Peroxidase Labeled Antibody Technic,Peroxidase Labeled Antibody Technique,Peroxidase-Antiperoxidase Complex Technics,Peroxidase-Antiperoxidase Complex Techniques,Peroxidase-Labeled Antibody Technics,Peroxidase-Labeled Antibody Techniques,Technic, Enzyme-Labeled Antibody,Technic, Immunoenzyme,Technic, Immunoperoxidase,Technic, Peroxidase-Antiperoxidase Complex,Technic, Peroxidase-Labeled Antibody,Technics, Enzyme-Labeled Antibody,Technics, Immunoenzyme,Technics, Immunoperoxidase,Technics, Peroxidase-Antiperoxidase Complex,Technics, Peroxidase-Labeled Antibody,Technique, Enzyme-Labeled Antibody,Technique, Immunoenzyme,Technique, Immunoperoxidase,Technique, Peroxidase-Antiperoxidase Complex,Technique, Peroxidase-Labeled Antibody,Techniques, Enzyme-Labeled Antibody,Techniques, Immunoenzyme,Techniques, Immunoperoxidase,Techniques, Peroxidase-Antiperoxidase Complex,Techniques, Peroxidase-Labeled Antibody
D009333 Neck The part of a human or animal body connecting the HEAD to the rest of the body. Necks
D001973 Bromodeoxyuridine A nucleoside that substitutes for thymidine in DNA and thus acts as an antimetabolite. It causes breaks in chromosomes and has been proposed as an antiviral and antineoplastic agent. It has been given orphan drug status for use in the treatment of primary brain tumors. BUdR,BrdU,Bromouracil Deoxyriboside,Broxuridine,5-Bromo-2'-deoxyuridine,5-Bromodeoxyuridine,NSC-38297,5 Bromo 2' deoxyuridine,5 Bromodeoxyuridine,Deoxyriboside, Bromouracil
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D005727 Ganglia, Spinal Sensory ganglia located on the dorsal spinal roots within the vertebral column. The spinal ganglion cells are pseudounipolar. The single primary branch bifurcates sending a peripheral process to carry sensory information from the periphery and a central branch which relays that information to the spinal cord or brain. Dorsal Root Ganglia,Spinal Ganglia,Dorsal Root Ganglion,Ganglion, Spinal,Ganglia, Dorsal Root,Ganglion, Dorsal Root,Spinal Ganglion
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis

Related Publications

O Rosen, and R Geffen, and C Avivi, and R S Goldstein
January 2005, Reproductive toxicology (Elmsford, N.Y.),
O Rosen, and R Geffen, and C Avivi, and R S Goldstein
December 1972, The Australian journal of experimental biology and medical science,
O Rosen, and R Geffen, and C Avivi, and R S Goldstein
January 1997, Developmental biology,
O Rosen, and R Geffen, and C Avivi, and R S Goldstein
July 1968, The Journal of experimental zoology,
O Rosen, and R Geffen, and C Avivi, and R S Goldstein
October 1997, Diabetologia,
O Rosen, and R Geffen, and C Avivi, and R S Goldstein
February 1997, Anatomy and embryology,
O Rosen, and R Geffen, and C Avivi, and R S Goldstein
January 1984, International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience,
O Rosen, and R Geffen, and C Avivi, and R S Goldstein
January 2011, Methods in cell biology,
O Rosen, and R Geffen, and C Avivi, and R S Goldstein
April 1954, Journal of cellular and comparative physiology,
O Rosen, and R Geffen, and C Avivi, and R S Goldstein
December 1990, Brain research. Developmental brain research,
Copied contents to your clipboard!