Caulobacter crescentus pili: structure and stage-specific expression. 1977

C Lagenaur, and N Agabian

Pili are functionally expressed during the predivisional and swarmer stages of the Caulobacter crescentus differentiation cycle. They appear on the developing swarmer pole and at the same cellular location as flagella and the phiCbK receptor sites. Pili disappear when the swarmer cell differentiates into a stalked cell; this occurs with the loss of flagella and the disappearance of phage receptor sites. C. crescentus CB13B1a pili have been purified and characterized. Monomeric pilin is a protein with an apparent molecular weight of 8,500 that stains weakly with periodic acid-Schiff reagent. The amino acid composition of purified pilin reveals very low quantities of basic amino acids and a complete absence of methionine. Pilin is synthesized throughout the C. crescentus differentiation cycle. Neither free pili nor pilin monomers are detectable in the growth media, suggesting that loss of piliation in the swarmer- to stalked-cell transition occurs via pilus retraction.

UI MeSH Term Description Entries
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009940 Organoids An organization of cells into an organ-like structure. Organoids can be generated in culture, e.g., self-organized three-dimensional tissue structures derived from STEM CELLS (see MICROPHYSIOLOGICAL SYSTEMS). They are also found in certain NEOPLASMS. Organoid
D002499 Centrifugation, Density Gradient Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Centrifugations, Density Gradient,Density Gradient Centrifugation,Density Gradient Centrifugations,Gradient Centrifugation, Density,Gradient Centrifugations, Density
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial

Related Publications

C Lagenaur, and N Agabian
January 1982, Developmental biology,
C Lagenaur, and N Agabian
January 1973, Journal of bacteriology,
C Lagenaur, and N Agabian
July 2012, Current biology : CB,
C Lagenaur, and N Agabian
February 1988, Journal of bacteriology,
C Lagenaur, and N Agabian
October 1987, The Journal of cell biology,
C Lagenaur, and N Agabian
June 1994, Journal of bacteriology,
C Lagenaur, and N Agabian
December 2015, The Biochemical journal,
C Lagenaur, and N Agabian
September 2012, World journal of microbiology & biotechnology,
C Lagenaur, and N Agabian
January 1991, Methods in enzymology,
Copied contents to your clipboard!