Sympathetic control of cardiac myosin heavy chain gene expression. 1996

M P Gupta, and M Gupta, and E Dizon, and R Zak
Department of Medicine, University of Chicago, IL 60637, USA.

Several neuroendocrine factors have been shown to influence the muscle phenotype. Various physiological reports have suggested the role of adrenergic nervous system for cardiac myosin heavy chain (MHC) expression. We have used cultured fetal rat heart myocytes to investigate the role of cAMP on the alpha- and beta-MHC gene expression. In low density cultures, addition of 1 mM 8 Br cAMP resulted in up regulation of alpha-MHC and down regulation of beta-MHC mRNA. This antithetic effect of cAMP depends on the basal expression of both expression of both MHC transcripts. In transient transfection analysis employing a series of alpha-MHC gene promoter/reporter constructs, we identified a 13 bp E-box M-CAT hybrid motif (EM element) which conferred a basal muscle specific and cAMP-inducible expression of the alpha-MHC gene. Data obtained from the mobility gel-shift analysis indicated that one of the factor(s) binding to the EM element is related to troponin T M-CAT binding factor (TEF-1). To test whether the protein binding to this sequence could be a substrate for cAMP-dependent phosphorylation, the cardiac nuclear proteins were preincubated in a kinase reaction buffer either with a catalytic subunit of PKA (CatPKA) or with cAMP, and binding activity of proteins to the EM element was evaluated by mobility gel shift assay. In a concentration dependent manner, a twofold increase in the intensity of the retarded band was observed. Furthermore, at 100 units of CatPKA, an additional band of faster mobility was observed which was not present either when phosphorylated nuclear extract was incubated with alkaline phosphatase or when ATP was absent in kinase reaction buffer. These results strongly suggest that factor(s) binding to the EM element is a substrate for cAMP dependent phosphorylation.

UI MeSH Term Description Entries
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D005333 Fetus The unborn young of a viviparous mammal, in the postembryonic period, after the major structures have been outlined. In humans, the unborn young from the end of the eighth week after CONCEPTION until BIRTH, as distinguished from the earlier EMBRYO, MAMMALIAN. Fetal Structures,Fetal Tissue,Fetuses,Mummified Fetus,Retained Fetus,Fetal Structure,Fetal Tissues,Fetus, Mummified,Fetus, Retained,Structure, Fetal,Structures, Fetal,Tissue, Fetal,Tissues, Fetal
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D006329 Heart Conduction System An impulse-conducting system composed of modified cardiac muscle, having the power of spontaneous rhythmicity and conduction more highly developed than the rest of the heart. Conduction System, Heart,Conduction Systems, Heart,Heart Conduction Systems,System, Heart Conduction,Systems, Heart Conduction
D000091262 TEA Domain Transcription Factors A family of transcription factors that share a conserved TEA DNA binding domain. TEA Domain,TEAD Transcription Factors

Related Publications

M P Gupta, and M Gupta, and E Dizon, and R Zak
September 2000, Microscopy research and technique,
M P Gupta, and M Gupta, and E Dizon, and R Zak
January 1987, The American journal of cardiology,
M P Gupta, and M Gupta, and E Dizon, and R Zak
March 1992, Biochemical and biophysical research communications,
M P Gupta, and M Gupta, and E Dizon, and R Zak
January 1991, Advances in experimental medicine and biology,
M P Gupta, and M Gupta, and E Dizon, and R Zak
February 1994, The Journal of biological chemistry,
M P Gupta, and M Gupta, and E Dizon, and R Zak
May 1986, Developmental biology,
M P Gupta, and M Gupta, and E Dizon, and R Zak
March 1998, The Biochemical journal,
M P Gupta, and M Gupta, and E Dizon, and R Zak
March 1993, Endocrinology,
M P Gupta, and M Gupta, and E Dizon, and R Zak
November 1997, The Journal of clinical investigation,
Copied contents to your clipboard!