Interaction of angiogenic basic fibroblast growth factor with endothelial cell heparan sulfate proteoglycans. Biological implications in neovascularization. 1996

M Rusnati, and M Presta
Department of Biomedical Science and Biotechnology, School of Medicine, University of Brescia, Italy.

Basic fibroblast growth factor is an angiogenic molecule involved in several physiological and pathological processes, including wound repair, embryonic development, and tumor growth. In vitro, basic fibroblast growth factor induces an "angiogenic phenotype" in endothelial cells, which includes chemotaxis, mitogenesis, protease production, beta-integrin expression, and tube formation in three-dimensional gels. It acts by binding to specific tyrosine kinase receptors and to cell-associated heparan sulfate proteoglycans. The physiological significance of the interaction with cell-associated and soluble heparan sulfate proteoglycans is manyfold. Heparan sulfate proteoglycans protect basic fibroblast growth factor from inactivation in the extracellular environment and modulate its bioavailability. At the cell surface, soluble and cell-associated heparan sulfate proteoglycans may play different roles in modulating the dimerization of the growth factor and its interaction with tyrosine kinase receptors. Finally, they affect the internalization and the intracellular fate of basic fibroblast growth factor, suggesting that growth factor slash proteoglycan complexes are involved in intracellular delivery. The bioavailability and the biological activity of basic fibroblast growth factor on endothelial cells strictly depend on the glycosaminoglycan milieu of the extracellular environment. Hence the angiogenic activity of the growth factor in vivo might be modulated by using exogenous glycosaminoglycans. The capacity of glycosaminoglycans to bind to and to influence the biological activity of basic fibroblast growth factor depends on size, degree of sulfation, and disaccharide composition. In the present paper we discuss the physiological significance and the biochemical bases of the interaction of the growth factor with heparan sulfate proteoglycans and exogenous glycosaminoglycans with a view to the possible therapeutic use of heparin-related oligosaccharides as basic fibroblast growth factor agonists or antagonists in angiogenesis-dependent diseases.

UI MeSH Term Description Entries
D011509 Proteoglycans Glycoproteins which have a very high polysaccharide content. Proteoglycan,Proteoglycan Type H
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D005109 Extracellular Matrix A meshwork-like substance found within the extracellular space and in association with the basement membrane of the cell surface. It promotes cellular proliferation and provides a supporting structure to which cells or cell lysates in culture dishes adhere. Matrix, Extracellular,Extracellular Matrices,Matrices, Extracellular
D006493 Heparin A highly acidic mucopolysaccharide formed of equal parts of sulfated D-glucosamine and D-glucuronic acid with sulfaminic bridges. The molecular weight ranges from six to twenty thousand. Heparin occurs in and is obtained from liver, lung, mast cells, etc., of vertebrates. Its function is unknown, but it is used to prevent blood clotting in vivo and vitro, in the form of many different salts. Heparinic Acid,alpha-Heparin,Heparin Sodium,Liquaemin,Sodium Heparin,Unfractionated Heparin,Heparin, Sodium,Heparin, Unfractionated,alpha Heparin
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016222 Fibroblast Growth Factor 2 A single-chain polypeptide growth factor that plays a significant role in the process of WOUND HEALING and is a potent inducer of PHYSIOLOGIC ANGIOGENESIS. Several different forms of the human protein exist ranging from 18-24 kDa in size due to the use of alternative start sites within the fgf-2 gene. It has a 55 percent amino acid residue identity to FIBROBLAST GROWTH FACTOR 1 and has potent heparin-binding activity. The growth factor is an extremely potent inducer of DNA synthesis in a variety of cell types from mesoderm and neuroectoderm lineages. It was originally named basic fibroblast growth factor based upon its chemical properties and to distinguish it from acidic fibroblast growth factor (FIBROBLAST GROWTH FACTOR 1). Basic Fibroblast Growth Factor,Fibroblast Growth Factor, Basic,HBGF-2,Cartilage-Derived Growth Factor,Class II Heparin-Binding Growth Factor,FGF-2,FGF2,Fibroblast Growth Factor-2,Heparin-Binding Growth Factor Class II,Prostate Epithelial Cell Growth Factor,Prostatropin,Cartilage Derived Growth Factor,FGF 2
D018919 Neovascularization, Physiologic The development of new BLOOD VESSELS during the restoration of BLOOD CIRCULATION during the healing process. Angiogenesis, Physiologic,Angiogenesis, Physiological,Neovascularization, Physiological,Physiologic Angiogenesis,Physiologic Neovascularization,Physiological Angiogenesis,Physiological Neovascularization
D020794 Receptor Protein-Tyrosine Kinases A class of cellular receptors that have an intrinsic PROTEIN-TYROSINE KINASE activity. PTK Receptor,Receptors, Protein-Tyrosine Kinase,Tyrosine Kinase Linked Receptor,Tyrosine Kinase Linked Receptors,Tyrosine Kinase Receptor,Tyrosine Kinase Receptors,PTK Receptors,Protein-Tyrosine Kinase Receptor,Receptor Protein-Tyrosine Kinase,Kinase Receptor, Tyrosine,Kinase, Receptor Protein-Tyrosine,Kinases, Receptor Protein-Tyrosine,Protein-Tyrosine Kinase Receptors,Protein-Tyrosine Kinase, Receptor,Protein-Tyrosine Kinases, Receptor,Receptor Protein Tyrosine Kinase,Receptor Protein Tyrosine Kinases,Receptor, PTK,Receptor, Protein-Tyrosine Kinase,Receptor, Tyrosine Kinase,Receptors, PTK,Receptors, Protein Tyrosine Kinase

Related Publications

M Rusnati, and M Presta
May 1992, The Journal of biological chemistry,
M Rusnati, and M Presta
July 1998, Biochemical and biophysical research communications,
Copied contents to your clipboard!