Dopamine D1/D2 antagonist combinations as antagonists of the discriminative stimulus effects of cocaine. 1996

B Geter-Douglass, and A L Riley
Psychobiology Section, NIDA Division of Intramural Research, Baltimore, MD 21224, USA.

Although data suggest that the dopaminergic system mediates the discriminative stimulus effects of cocaine, neither selective D1 or D2 dopamine agonists nor selective D1 or D2 antagonists substitute reliably for or consistently block these effects. These findings suggest that concurrent activity at these receptor subtypes may underlie this discrimination. Accordingly, it would be expected that simultaneous blockade of these receptors may be necessary to block it fully. The ability of various combinations of the D1 antagonist, SCH 23,390, and the D2 antagonist, haloperidol, were tested for their ability to block the cocaine stimulus in rats trained to discriminate cocaine (7.5, 10, or 13 mg/kg) from vehicle. Antagonist combinations decreased the percentage of cocaine-appropriate responses 10-95% below the cocaine baseline at doses of the antagonist that were inactive when given separately. These findings support the position that activity at D1-like and D2-like receptor subtypes may account for more of the pharmacological action of cocaine than activation of a single dopamine receptor subtype.

UI MeSH Term Description Entries
D003042 Cocaine An alkaloid ester extracted from the leaves of plants including coca. It is a local anesthetic and vasoconstrictor and is clinically used for that purpose, particularly in the eye, ear, nose, and throat. It also has powerful central nervous system effects similar to the amphetamines and is a drug of abuse. Cocaine, like amphetamines, acts by multiple mechanisms on brain catecholaminergic neurons; the mechanism of its reinforcing effects is thought to involve inhibition of dopamine uptake. Cocaine HCl,Cocaine Hydrochloride,HCl, Cocaine,Hydrochloride, Cocaine
D004192 Discrimination, Psychological Differential response to different stimuli. Discrimination, Psychology,Psychological Discrimination
D004193 Discrimination Learning Learning that is manifested in the ability to respond differentially to various stimuli. Discriminative Learning,Discrimination Learnings,Discriminative Learnings,Learning, Discrimination,Learning, Discriminative
D005260 Female Females
D006220 Haloperidol A phenyl-piperidinyl-butyrophenone that is used primarily to treat SCHIZOPHRENIA and other PSYCHOSES. It is also used in schizoaffective disorder, DELUSIONAL DISORDERS, ballism, and TOURETTE SYNDROME (a drug of choice) and occasionally as adjunctive therapy in INTELLECTUAL DISABILITY and the chorea of HUNTINGTON DISEASE. It is a potent antiemetic and is used in the treatment of intractable HICCUPS. (From AMA Drug Evaluations Annual, 1994, p279) Haldol
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001552 Benzazepines Compounds with BENZENE fused to AZEPINES.
D017447 Receptors, Dopamine D1 A subfamily of G-PROTEIN-COUPLED RECEPTORS that bind the neurotransmitter DOPAMINE and modulate its effects. D1-class receptor genes lack INTRONS, and the receptors stimulate ADENYLYL CYCLASES. Dopamine D1 Receptors,Dopamine-D1 Receptor,D1 Receptors, Dopamine,Dopamine D1 Receptor,Receptor, Dopamine-D1
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D018492 Dopamine Antagonists Drugs that bind to but do not activate DOPAMINE RECEPTORS, thereby blocking the actions of dopamine or exogenous agonists. Many drugs used in the treatment of psychotic disorders (ANTIPSYCHOTIC AGENTS) are dopamine antagonists, although their therapeutic effects may be due to long-term adjustments of the brain rather than to the acute effects of blocking dopamine receptors. Dopamine antagonists have been used for several other clinical purposes including as ANTIEMETICS, in the treatment of Tourette syndrome, and for hiccup. Dopamine receptor blockade is associated with NEUROLEPTIC MALIGNANT SYNDROME. Dopamine Antagonist,Dopamine Blocker,Dopamine Receptor Antagonist,Dopamine Receptor Antagonists,Dopaminergic Antagonist,Dopaminergic Antagonists,Antagonists, Dopamine,Antagonists, Dopamine Receptor,Antagonists, Dopaminergic,Dopamine Blockers,Antagonist, Dopamine,Antagonist, Dopamine Receptor,Antagonist, Dopaminergic,Blocker, Dopamine,Blockers, Dopamine,Receptor Antagonist, Dopamine,Receptor Antagonists, Dopamine

Related Publications

B Geter-Douglass, and A L Riley
January 1996, Acta neurobiologiae experimentalis,
B Geter-Douglass, and A L Riley
September 1987, The Journal of pharmacology and experimental therapeutics,
B Geter-Douglass, and A L Riley
August 1995, Pharmacology, biochemistry, and behavior,
B Geter-Douglass, and A L Riley
January 1996, Behavioural brain research,
B Geter-Douglass, and A L Riley
January 1991, Psychopharmacology,
Copied contents to your clipboard!