Increased expression of BDNF and trkB mRNA in rat facial motoneurons after axotomy. 1996

N R Kobayashi, and A M Bedard, and M T Hincke, and W Tetzlaff
Department of Physiology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.

Motoneurons of the adult survive after axotomy even though they are deprived of putative target derived trophic factors. Alternative sources of trophic support may substitute. In this study we test the hypothesis that the immediate environment of the motoneuronal cell body or the cell body itself increases the production of trophic factors after axonal injury. Using in situ hybridization (ISH) and reverse transcription-polymerase chain reaction (RT-PCR), we report that after axotomy, rat facial motoneurons increase the expression of mRNA for brain-derived neurotrophic factor (BDNF) and its receptor trkB. After transection of the facial nerve, we measured a 2- to 4-fold increase in BDNF mRNA expression which had its onset between 3 and 8 h after injury. The BDNF mRNA levels peaked at approximately 1-2 days and gradually declined thereafter to return to contralateral levels within 7 days of injury. Western blotting revealed a several-fold increase in BDNF as early as 24 h, which subsequently reached a maximum in approximately 5-7 days and was still sustained at 2 weeks post-axotomy. Using exon-specific primers, we determined that the increase in BDNF mRNA is largely due to an increased expression from the promoters of exons IV and III, and to a lesser extent from exons I and II. Analysing the mRNA expression for the BDNF receptor, trkB, we found a 2- to 3-fold increase in full-length trkB mRNA expression starting 2 days after axotomy which lasted 2-3 weeks. These findings suggest that BDNF might act locally on axotomized motoneurons in an autocrine fashion, providing support for axotomized motoneurons during the first weeks after axotomy.

UI MeSH Term Description Entries
D008297 Male Males
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009414 Nerve Growth Factors Factors which enhance the growth potentialities of sensory and sympathetic nerve cells. Neurite Outgrowth Factor,Neurite Outgrowth Factors,Neuronal Growth-Associated Protein,Neuronotrophic Factor,Neurotrophic Factor,Neurotrophic Factors,Neurotrophin,Neurotrophins,Growth-Associated Proteins, Neuronal,Neuronal Growth-Associated Proteins,Neuronotrophic Factors,Neurotrophic Protein,Neurotrophic Proteins,Proteins, Neuronal Growth-Associated,Factor, Neurite Outgrowth,Factor, Neuronotrophic,Factor, Neurotrophic,Factors, Nerve Growth,Factors, Neurite Outgrowth,Factors, Neuronotrophic,Factors, Neurotrophic,Growth Associated Proteins, Neuronal,Growth-Associated Protein, Neuronal,Neuronal Growth Associated Protein,Neuronal Growth Associated Proteins,Outgrowth Factor, Neurite,Outgrowth Factors, Neurite,Protein, Neuronal Growth-Associated
D005091 Exons The parts of a transcript of a split GENE remaining after the INTRONS are removed. They are spliced together to become a MESSENGER RNA or other functional RNA. Mini-Exon,Exon,Mini Exon,Mini-Exons
D005154 Facial Nerve The 7th cranial nerve. The facial nerve has two parts, the larger motor root which may be called the facial nerve proper, and the smaller intermediate or sensory root. Together they provide efferent innervation to the muscles of facial expression and to the lacrimal and SALIVARY GLANDS, and convey afferent information for TASTE from the anterior two-thirds of the TONGUE and for TOUCH from the EXTERNAL EAR. Cranial Nerve VII,Marginal Mandibular Branch,Marginal Mandibular Nerve,Seventh Cranial Nerve,Nerve VII,Nerve of Wrisberg,Nervus Facialis,Nervus Intermedius,Nervus Intermedius of Wrisberg,Cranial Nerve VIIs,Cranial Nerve, Seventh,Facial Nerves,Mandibular Nerve, Marginal,Mandibular Nerves, Marginal,Marginal Mandibular Nerves,Nerve VIIs,Nerve, Facial,Nerve, Marginal Mandibular,Nerve, Seventh Cranial,Nerves, Marginal Mandibular,Nervus Faciali,Seventh Cranial Nerves,Wrisberg Nerve,Wrisberg Nervus Intermedius
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

N R Kobayashi, and A M Bedard, and M T Hincke, and W Tetzlaff
April 2001, Zhonghua er bi yan hou ke za zhi,
N R Kobayashi, and A M Bedard, and M T Hincke, and W Tetzlaff
December 2000, The European journal of neuroscience,
N R Kobayashi, and A M Bedard, and M T Hincke, and W Tetzlaff
November 1990, Journal of neuroscience research,
N R Kobayashi, and A M Bedard, and M T Hincke, and W Tetzlaff
April 2005, Brain research. Molecular brain research,
N R Kobayashi, and A M Bedard, and M T Hincke, and W Tetzlaff
August 1997, Experimental neurology,
N R Kobayashi, and A M Bedard, and M T Hincke, and W Tetzlaff
August 2002, Zhonghua er bi yan hou ke za zhi,
N R Kobayashi, and A M Bedard, and M T Hincke, and W Tetzlaff
July 1999, Brain research. Molecular brain research,
N R Kobayashi, and A M Bedard, and M T Hincke, and W Tetzlaff
October 2001, Neuroscience letters,
N R Kobayashi, and A M Bedard, and M T Hincke, and W Tetzlaff
January 2006, Folia neuropathologica,
Copied contents to your clipboard!