Plakoglobin domains that define its association with the desmosomal cadherins and the classical cadherins: identification of unique and shared domains. 1996

J K Wahl, and P A Sacco, and T M McGranahan-Sadler, and L M Sauppé, and M J Wheelock, and K R Johnson
Department of Biology, University of Toledo, OH 43606, USA.

Two cell-cell junctions, the adherens junction and the desmosome, are prominent in epithelial cells. These junctions are composed of transmembrane cadherins which interact with cytoplasmic proteins that serve to link the cadherin to the cytoskeleton. One component of both adherens junctions and desmosomes is plakoglobin. In the adherens junction plakoglobin interacts with both the classical cadherin and with alpha-catenin. Alpha-catenin in turn interacts with microfilaments. The role plakoglobin plays in the desmosome is not well understood. Plakoglobin interacts with the desmosomal cadherins, but how and if this mediates interactions with the intermediate filament cytoskeleton is not known. Here we compare the domains of plakoglobin that allow it to associate with the desmosomal cadherins with those involved in interactions with the classical cadherins. We show that three sites on plakoglobin are involved in associations with the desmosomal cadherins. A domain near the N terminus is unique to the desmosomal cadherins and overlaps with the site that interacts with alpha-catenin, suggesting that there may be competition between alpha-catenin and the desmosomal cadherins for interactions with plakoglobin. In addition, a central domain is shared with regions used by plakoglobin to associate with the classical cadherins. Finally, a domain near the C terminus is shown to strongly modulate the interactions with the desmosomal cadherins. This latter domain also contributes to the association of plakoglobin with the classical cadherins.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D003598 Cytoskeletal Proteins Major constituent of the cytoskeleton found in the cytoplasm of eukaryotic cells. They form a flexible framework for the cell, provide attachment points for organelles and formed bodies, and make communication between parts of the cell possible. Proteins, Cytoskeletal
D003896 Desmosomes A type of junction that attaches one cell to its neighbor. One of a number of differentiated regions which occur, for example, where the cytoplasmic membranes of adjacent epithelial cells are closely apposed. It consists of a circular region of each membrane together with associated intracellular microfilaments and an intercellular material which may include, for example, mucopolysaccharides. (From Glick, Glossary of Biochemistry and Molecular Biology, 1990; Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Desmosome
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D015815 Cell Adhesion Molecules Surface ligands, usually glycoproteins, that mediate cell-to-cell adhesion. Their functions include the assembly and interconnection of various vertebrate systems, as well as maintenance of tissue integration, wound healing, morphogenic movements, cellular migrations, and metastasis. Cell Adhesion Molecule,Intercellular Adhesion Molecule,Intercellular Adhesion Molecules,Leukocyte Adhesion Molecule,Leukocyte Adhesion Molecules,Saccharide-Mediated Cell Adhesion Molecules,Saccharide Mediated Cell Adhesion Molecules,Adhesion Molecule, Cell,Adhesion Molecule, Intercellular,Adhesion Molecule, Leukocyte,Adhesion Molecules, Cell,Adhesion Molecules, Intercellular,Adhesion Molecules, Leukocyte,Molecule, Cell Adhesion,Molecule, Intercellular Adhesion,Molecule, Leukocyte Adhesion,Molecules, Cell Adhesion,Molecules, Intercellular Adhesion,Molecules, Leukocyte Adhesion
D015820 Cadherins Calcium-dependent cell adhesion proteins. They are important in the formation of ADHERENS JUNCTIONS between cells. Cadherins are classified by their distinct immunological and tissue specificities, either by letters (E- for epithelial, N- for neural, and P- for placental cadherins) or by numbers (cadherin-12 or N-cadherin 2 for brain-cadherin). Cadherins promote cell adhesion via a homophilic mechanism as in the construction of tissues and of the whole animal body. Cadherin,E-Cadherins,Epithelial-Cadherin,Liver Cell Adhesion Molecules,N-Cadherins,Neural Cadherin,P-Cadherins,Uvomorulin,Cadherin-1,Cadherin-2,Cadherin-3,E-Cadherin,Epithelial-Cadherins,Liver Cell Adhesion Molecule,N-Cadherin,Neural Cadherins,P-Cadherin,Placental Cadherins,Cadherin 1,Cadherin 2,Cadherin 3,Cadherin, Neural,Cadherins, Neural,Cadherins, Placental,E Cadherin,E Cadherins,Epithelial Cadherin,Epithelial Cadherins,N Cadherin,N Cadherins,P Cadherin,P Cadherins
D017434 Protein Structure, Tertiary The level of protein structure in which combinations of secondary protein structures (ALPHA HELICES; BETA SHEETS; loop regions, and AMINO ACID MOTIFS) pack together to form folded shapes. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Tertiary Protein Structure,Protein Structures, Tertiary,Tertiary Protein Structures

Related Publications

J K Wahl, and P A Sacco, and T M McGranahan-Sadler, and L M Sauppé, and M J Wheelock, and K R Johnson
May 1996, The Journal of biological chemistry,
J K Wahl, and P A Sacco, and T M McGranahan-Sadler, and L M Sauppé, and M J Wheelock, and K R Johnson
December 1994, The Journal of biological chemistry,
J K Wahl, and P A Sacco, and T M McGranahan-Sadler, and L M Sauppé, and M J Wheelock, and K R Johnson
June 2012, Journal of cell science,
J K Wahl, and P A Sacco, and T M McGranahan-Sadler, and L M Sauppé, and M J Wheelock, and K R Johnson
April 1996, The Journal of cell biology,
J K Wahl, and P A Sacco, and T M McGranahan-Sadler, and L M Sauppé, and M J Wheelock, and K R Johnson
May 1993, The Journal of cell biology,
J K Wahl, and P A Sacco, and T M McGranahan-Sadler, and L M Sauppé, and M J Wheelock, and K R Johnson
August 1995, The Journal of biological chemistry,
J K Wahl, and P A Sacco, and T M McGranahan-Sadler, and L M Sauppé, and M J Wheelock, and K R Johnson
November 2009, The Journal of biological chemistry,
J K Wahl, and P A Sacco, and T M McGranahan-Sadler, and L M Sauppé, and M J Wheelock, and K R Johnson
February 1993, Cell,
J K Wahl, and P A Sacco, and T M McGranahan-Sadler, and L M Sauppé, and M J Wheelock, and K R Johnson
January 1992, Proceedings of the National Academy of Sciences of the United States of America,
J K Wahl, and P A Sacco, and T M McGranahan-Sadler, and L M Sauppé, and M J Wheelock, and K R Johnson
September 1996, The Journal of investigative dermatology,
Copied contents to your clipboard!