Restoration of circadian rhythmicity by transplants of SCN "micropunches". 1996

J LeSauter, and M N Lehman, and R Silver
Department of Psychology, Barnard College, New York, NY 10027, USA.

Although it is widely accepted that the suprachiasmatic nuclei (SCN) of the hypothalamus serve as biological pacemakers regulating circadian rhythmicity, a number of studies suggest that some circadian rhythms may be controlled by extra-SCN structures. Transplantation of fetal anterior hypothalamic tissue containing the SCN restores circadian locomotor rhythms in SCN-lesioned hosts. Such transplants, however, contain substantial extra-SCN hypothalamic tissue. In the present study, the authors examined the recovery of circadian locomotor rhythms in animals implanted with small grafts harvested by taking "micropunches" from vibratome-sectioned brain slices. Micropunches were taken from three areas of the hypothalamus known to receive retinal input: the SCN, the subparaventricular zone, and the supraoptic nucleus. The results indicate that transplants restricted to the SCN region are necessary and sufficient for restoration of circadian locomotor activity rhythms and that micropunches of tissues from other sources are ineffective.

UI MeSH Term Description Entries
D008297 Male Males
D008647 Mesocricetus A genus in the order Rodentia and family Cricetidae. One species, Mesocricetus auratus or golden hamster is widely used in biomedical research. Hamsters, Golden,Hamsters, Golden Syrian,Hamsters, Syrian,Mesocricetus auratus,Syrian Golden Hamster,Syrian Hamster,Golden Hamster,Golden Hamster, Syrian,Golden Hamsters,Golden Syrian Hamsters,Hamster, Golden,Hamster, Syrian,Hamster, Syrian Golden,Syrian Hamsters
D009043 Motor Activity Body movements of a human or an animal as a behavioral phenomenon. Activities, Motor,Activity, Motor,Motor Activities
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D002940 Circadian Rhythm The regular recurrence, in cycles of about 24 hours, of biological processes or activities, such as sensitivity to drugs or environmental and physiological stimuli. Diurnal Rhythm,Nyctohemeral Rhythm,Twenty-Four Hour Rhythm,Nycthemeral Rhythm,Circadian Rhythms,Diurnal Rhythms,Nycthemeral Rhythms,Nyctohemeral Rhythms,Rhythm, Circadian,Rhythm, Diurnal,Rhythm, Nycthemeral,Rhythm, Nyctohemeral,Rhythm, Twenty-Four Hour,Rhythms, Circadian,Rhythms, Diurnal,Rhythms, Nycthemeral,Rhythms, Nyctohemeral,Rhythms, Twenty-Four Hour,Twenty Four Hour Rhythm,Twenty-Four Hour Rhythms
D005865 Gestational Age The age of the conceptus, beginning from the time of FERTILIZATION. In clinical obstetrics, the gestational age is often estimated from the onset of the last MENSTRUATION which is about 2 weeks before OVULATION and fertilization. It is also estimated to begin from fertilization, estrus, coitus, or artificial insemination. Embryologic Age,Fetal Maturity, Chronologic,Chronologic Fetal Maturity,Fetal Age,Maturity, Chronologic Fetal,Age, Embryologic,Age, Fetal,Age, Gestational,Ages, Embryologic,Ages, Fetal,Ages, Gestational,Embryologic Ages,Fetal Ages,Gestational Ages
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D006579 Heterozygote An individual having different alleles at one or more loci regarding a specific character. Carriers, Genetic,Genetic Carriers,Carrier, Genetic,Genetic Carrier,Heterozygotes
D006720 Homozygote An individual in which both alleles at a given locus are identical. Homozygotes
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J LeSauter, and M N Lehman, and R Silver
December 2012, Journal of biological rhythms,
J LeSauter, and M N Lehman, and R Silver
August 1990, Brain research,
J LeSauter, and M N Lehman, and R Silver
June 2006, Journal of biological rhythms,
J LeSauter, and M N Lehman, and R Silver
January 1993, Journal of neural transplantation & plasticity,
J LeSauter, and M N Lehman, and R Silver
July 2006, PLoS computational biology,
J LeSauter, and M N Lehman, and R Silver
August 2000, Seminars in perinatology,
J LeSauter, and M N Lehman, and R Silver
December 2002, Journal of biological rhythms,
Copied contents to your clipboard!