Influence of the triplet excited state on the photobleaching kinetics of fluorescein in microscopy. 1996

L Song, and C A Varma, and J W Verhoeven, and H J Tanke
Laboratory of Cytochemistry and Cytometry, Faculty of Medicine, Leiden University, The Netherlands. lsong@mpc186.mpibpc.gwdg.de

The investigation in this report aimed at providing photophysical evidence that the long-lived triplet excited state plays an important role in the non-single-exponential photobleaching kinetics of fluorescein in microscopy. Experiments demonstrated that a thiol-containing reducing agent, mercaptoethylamine (MEA or cysteamine), was the most effective, among other commonly known radical quenchers or singlet oxygen scavengers, in suppressing photobleaching of fluorescein while not reducing the fluorescence quantum yield. The protective effect against photobleaching of fluorescein in the bound state was also found in microscopy. The antibleaching effect of MEA let to a series of experiments using time-delayed fluorescence spectroscopy and nanosecond laser flash photolysis. The combined results showed that MEA directly quenched the triplet excited state and the semioxidized radical form of fluorescein without affecting the singlet excited state. The triplet lifetime of fluorescein was reduced upon adding MEA. It demonstrated that photobleaching of fluorescein in microscopy is related to the accumulation of the long-lived triplet excited state of fluorescein and that by quenching the triplet excited state and the semioxidized form of fluorescein to restore the dye molecules to the singlet ground state, photobleaching can be reduced.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D010777 Photochemistry A branch of physical chemistry which studies chemical reactions, isomerization and physical behavior that may occur under the influence of visible and/or ultraviolet light. Photochemistries
D010782 Photolysis Chemical bond cleavage reactions resulting from absorption of radiant energy. Photodegradation
D011837 Radiation-Protective Agents Drugs used to protect against ionizing radiation. They are usually of interest for use in radiation therapy but have been considered for other purposes, e.g. military. Radiation Protectant,Radiation Protective Agent,Radiation-Protective Agent,Radiation-Protective Drug,Radioprotective Agent,Radioprotective Agents,Radioprotective Drug,Agents, Radiation-Protective,Radiation Protectants,Radiation Protective Agents,Radiation-Protective Drugs,Radiation-Protective Effect,Radiation-Protective Effects,Radioprotective Drugs,Agent, Radiation Protective,Agent, Radiation-Protective,Agent, Radioprotective,Agents, Radiation Protective,Agents, Radioprotective,Drug, Radiation-Protective,Drug, Radioprotective,Drugs, Radiation-Protective,Drugs, Radioprotective,Effect, Radiation-Protective,Effects, Radiation-Protective,Protectant, Radiation,Protectants, Radiation,Protective Agent, Radiation,Protective Agents, Radiation,Radiation Protective Drug,Radiation Protective Drugs,Radiation Protective Effect,Radiation Protective Effects
D003543 Cysteamine A mercaptoethylamine compound that is endogenously derived from the COENZYME A degradative pathway. The fact that cysteamine is readily transported into LYSOSOMES where it reacts with CYSTINE to form cysteine-cysteamine disulfide and CYSTEINE has led to its use in CYSTINE DEPLETING AGENTS for the treatment of CYSTINOSIS. Cysteinamine,Mercaptamine,2-Aminoethanethiol,Becaptan,Cystagon,Cysteamine Bitartrate,Cysteamine Dihydrochloride,Cysteamine Hydrobromide,Cysteamine Hydrochloride,Cysteamine Maleate (1:1),Cysteamine Tartrate,Cysteamine Tartrate (1:1),Cysteamine Tosylate,Cysteamine, 35S-Labeled,Mercamine,Mercaptoethylamine,beta-Mercaptoethylamine,2 Aminoethanethiol,35S-Labeled Cysteamine,Bitartrate, Cysteamine,Cysteamine, 35S Labeled,Dihydrochloride, Cysteamine,Hydrobromide, Cysteamine,Hydrochloride, Cysteamine,Tartrate, Cysteamine,Tosylate, Cysteamine,beta Mercaptoethylamine
D005452 Fluoresceins A family of spiro(isobenzofuran-1(3H),9'-(9H)xanthen)-3-one derivatives. These are used as dyes, as indicators for various metals, and as fluorescent labels in immunoassays. Tetraiodofluorescein
D005609 Free Radicals Highly reactive molecules with an unsatisfied electron valence pair. Free radicals are produced in both normal and pathological processes. Free radicals include reactive oxygen and nitrogen species (RONS). They are proven or suspected agents of tissue damage in a wide variety of circumstances including radiation, damage from environment chemicals, and aging. Natural and pharmacological prevention of free radical damage is being actively investigated. Free Radical
D001703 Biophysics The study of PHYSICAL PHENOMENA and PHYSICAL PROCESSES as applied to living things. Mechanobiology
D012996 Solutions The homogeneous mixtures formed by the mixing of a solid, liquid, or gaseous substance (solute) with a liquid (the solvent), from which the dissolved substances can be recovered by physical processes. (From Grant & Hackh's Chemical Dictionary, 5th ed) Solution

Related Publications

L Song, and C A Varma, and J W Verhoeven, and H J Tanke
March 1997, Cytometry,
L Song, and C A Varma, and J W Verhoeven, and H J Tanke
June 1995, Biophysical journal,
L Song, and C A Varma, and J W Verhoeven, and H J Tanke
January 2017, PloS one,
L Song, and C A Varma, and J W Verhoeven, and H J Tanke
March 1996, Photochemistry and photobiology,
L Song, and C A Varma, and J W Verhoeven, and H J Tanke
November 1976, Photochemistry and photobiology,
L Song, and C A Varma, and J W Verhoeven, and H J Tanke
February 2019, Physical chemistry chemical physics : PCCP,
L Song, and C A Varma, and J W Verhoeven, and H J Tanke
March 2008, Journal of the American Chemical Society,
L Song, and C A Varma, and J W Verhoeven, and H J Tanke
January 2003, Chemical communications (Cambridge, England),
L Song, and C A Varma, and J W Verhoeven, and H J Tanke
January 2012, The journal of physical chemistry. A,
L Song, and C A Varma, and J W Verhoeven, and H J Tanke
December 2012, The journal of physical chemistry. B,
Copied contents to your clipboard!