Patterns of neuronal differentiation in neural tube mutant mice: curly tail and Pax3 splotch-delayed. 1996

C R Keller-Peck, and R J Mullen
Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City 84132, USA.

A battery of antibodies was used to assess development of the spinal cord and its neurons in mouse embryos with neural tube defects (NTDs). The two mutant strains examined, curly tail (ct) and splotch-delayed (Pax3Sp-d), develop an open neural tube for unrelated reasons, and thus provided for a complementary analysis. Five percent of embryos homozygous for the ct gene and 89% of embryos homozygous for the Pax3Sp-d gene develop spina bifida in the lumbosacral region of the neuraxis. Expression of several neuronal antigens, including Islet-1/2, polysialylated neural cell adhesion molecule (NCAM), neurofilaments, and a neuronal-specific nuclear protein (Neu-N) recognized by monoclonal antibody A60, were used as indicators of the level of differentiation of neuronal tissue. Immunohistochemical labeling suggests that early (embryonic days 12-15) neuronal differentiation in the dorsal and ventral region of the dysraphic neural tube occurs remarkably normally in both of the mutants. Similarly, labeling with antibodies to NCAM and neuroafilaments indicate that axonal development during early neurogenesis is unperturbed. Later stages of neuronal maturation, however, do not occur in the usual manner. Instead, the neuronal tissue begins a prodigious degeneration at embryonic day 17 (E17), so that by E18 only a rudimentary tissue remains. These results suggest that the aberrant morphology of the neural tube does not affect neuronal differentiation. However, the anomalous morphological and chemical environment may contribute to the neuronal degeneration observed at later stages.

UI MeSH Term Description Entries
D008297 Male Males
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008818 Mice, Neurologic Mutants Mice which carry mutant genes for neurologic defects or abnormalities. Lurcher Mice,Nervous Mice,Reeler Mice,Staggerer Mice,Weaver Mice,Chakragati Mice,Chakragati Mouse,Lurcher Mouse,Mice, Neurological Mutants,Mouse, Neurologic Mutant,Mouse, Neurological Mutant,Nervous Mouse,Neurologic Mutant Mice,Neurological Mutant Mouse,Reeler Mouse,Staggerer Mouse,Weaver Mouse,ckr Mutant Mice,Mice, Chakragati,Mice, Lurcher,Mice, Nervous,Mice, Neurologic Mutant,Mice, Reeler,Mice, Staggerer,Mice, Weaver,Mice, ckr Mutant,Mouse, Chakragati,Mouse, Lurcher,Mouse, Nervous,Mouse, Reeler,Mouse, Staggerer,Mouse, Weaver,Mutant Mice, Neurologic,Mutant Mice, ckr,Mutant Mouse, Neurologic,Neurologic Mutant Mouse
D009410 Nerve Degeneration Loss of functional activity and trophic degeneration of nerve axons and their terminal arborizations following the destruction of their cells of origin or interruption of their continuity with these cells. The pathology is characteristic of neurodegenerative diseases. Often the process of nerve degeneration is studied in research on neuroanatomical localization and correlation of the neurophysiology of neural pathways. Neuron Degeneration,Degeneration, Nerve,Degeneration, Neuron,Degenerations, Nerve,Degenerations, Neuron,Nerve Degenerations,Neuron Degenerations
D009436 Neural Tube Defects Congenital malformations of the central nervous system and adjacent structures related to defective neural tube closure during the first trimester of pregnancy generally occurring between days 18-29 of gestation. Ectodermal and mesodermal malformations (mainly involving the skull and vertebrae) may occur as a result of defects of neural tube closure. (From Joynt, Clinical Neurology, 1992, Ch55, pp31-41) Craniorachischisis,Developmental Defects, Neural Tube,Diastematomyelia,Exencephaly,Neurenteric Cyst,Spinal Cord Myelodysplasia,Tethered Cord Syndrome,Acrania,Developmental Neural Tube Defects,Iniencephaly,Neural Tube Developmental Defects,Neuroenteric Cyst,Occult Spinal Dysraphism,Occult Spinal Dysraphism Sequence,Tethered Spinal Cord Syndrome,Acranias,Craniorachischises,Cyst, Neurenteric,Cyst, Neuroenteric,Cysts, Neurenteric,Cysts, Neuroenteric,Defect, Neural Tube,Defects, Neural Tube,Diastematomyelias,Dysraphism, Occult Spinal,Dysraphisms, Occult Spinal,Exencephalies,Iniencephalies,Myelodysplasia, Spinal Cord,Myelodysplasias, Spinal Cord,Neural Tube Defect,Neurenteric Cysts,Neuroenteric Cysts,Occult Spinal Dysraphisms,Spinal Cord Myelodysplasias,Spinal Dysraphism, Occult,Spinal Dysraphisms, Occult,Tethered Cord Syndromes
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D005260 Female Females
D005808 Genes, Recessive Genes that influence the PHENOTYPE only in the homozygous state. Conditions, Recessive Genetic,Genetic Conditions, Recessive,Recessive Genetic Conditions,Condition, Recessive Genetic,Gene, Recessive,Genetic Condition, Recessive,Recessive Gene,Recessive Genes,Recessive Genetic Condition
D005865 Gestational Age The age of the conceptus, beginning from the time of FERTILIZATION. In clinical obstetrics, the gestational age is often estimated from the onset of the last MENSTRUATION which is about 2 weeks before OVULATION and fertilization. It is also estimated to begin from fertilization, estrus, coitus, or artificial insemination. Embryologic Age,Fetal Maturity, Chronologic,Chronologic Fetal Maturity,Fetal Age,Maturity, Chronologic Fetal,Age, Embryologic,Age, Fetal,Age, Gestational,Ages, Embryologic,Ages, Fetal,Ages, Gestational,Embryologic Ages,Fetal Ages,Gestational Ages

Related Publications

C R Keller-Peck, and R J Mullen
July 1989, Teratology,
C R Keller-Peck, and R J Mullen
September 1993, Development (Cambridge, England),
C R Keller-Peck, and R J Mullen
January 1987, Journal of craniofacial genetics and developmental biology,
C R Keller-Peck, and R J Mullen
December 1992, Teratology,
C R Keller-Peck, and R J Mullen
October 1982, Prenatal diagnosis,
C R Keller-Peck, and R J Mullen
December 1976, Journal of medical genetics,
C R Keller-Peck, and R J Mullen
November 1979, Proceedings of the Royal Society of London. Series B, Biological sciences,
C R Keller-Peck, and R J Mullen
April 1974, The Journal of comparative neurology,
C R Keller-Peck, and R J Mullen
November 1979, Proceedings of the Royal Society of London. Series B, Biological sciences,
Copied contents to your clipboard!