Differential replication and DNA elimination in the polytene chromosomes of Euplotes crassus. 1996

J S Frels, and C M Tebeau, and S Z Doktor, and C L Jahn
Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA.

The transposon-like Tec elements of Euplotes crassus are precisely excised during formation of polytene chromosomes in the developing macronucleus. To determine whether all Tec elements exhibit identical developmental timing of excision, we used polymerase chain reaction to visualize amplification and diminution at numerous randomly selected Tec insertion sites. Two classes of sites are evident. Early replicating sites show one or more rounds of amplification and diminution (corresponding to excision) and frequently occur within macronuclear-destined sequences. Late replicating sites do not undergo diminution until chromosome fragmentation and are predominantly associated with eliminated sequences. We conclude that the previously described clustering of macro-nuclear-destined sequences in the micronuclear genome allows for their differential replication at the polytene stage and results in targeting of these sequences for transcriptional activation and highly specific deletion and chromosome fragmentation processes.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D016054 DNA, Protozoan Deoxyribonucleic acid that makes up the genetic material of protozoa. Protozoan DNA
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain
D016812 Euplotes A genus of ciliate protozoa having a dorsoventrally flattened body with widely spaced rows of short bristle-like cilia on the dorsal surface. Euplote
D017384 Sequence Deletion Deletion of sequences of nucleic acids from the genetic material of an individual. Deletion Mutation,Deletion Mutations,Deletion, Sequence,Deletions, Sequence,Mutation, Deletion,Mutations, Deletion,Sequence Deletions

Related Publications

J S Frels, and C M Tebeau, and S Z Doktor, and C L Jahn
December 1999, Molecular biology of the cell,
J S Frels, and C M Tebeau, and S Z Doktor, and C L Jahn
January 1969, Genetics,
J S Frels, and C M Tebeau, and S Z Doktor, and C L Jahn
August 1972, Cell differentiation,
J S Frels, and C M Tebeau, and S Z Doktor, and C L Jahn
January 1991, The Journal of protozoology,
J S Frels, and C M Tebeau, and S Z Doktor, and C L Jahn
January 1972, Results and problems in cell differentiation,
J S Frels, and C M Tebeau, and S Z Doktor, and C L Jahn
April 1999, Gene,
J S Frels, and C M Tebeau, and S Z Doktor, and C L Jahn
March 1966, Journal of molecular biology,
J S Frels, and C M Tebeau, and S Z Doktor, and C L Jahn
October 1994, Nucleic acids research,
J S Frels, and C M Tebeau, and S Z Doktor, and C L Jahn
August 1973, Journal of molecular biology,
Copied contents to your clipboard!