Acute hypoxic pulmonary vasoconstriction in man is attenuated by type I angiotensin II receptor blockade. 1995

D G Kiely, and R I Cargill, and B J Lipworth
Department of Clinical Pharmacology, University of Dundee, UK.

OBJECTIVE We examined the hypothesis that angiotensin II (ANG II) is a modulator of acute hypoxic pulmonary vasoconstriction (HPV) by looking at the effect of losartan, a selective type 1 ANG II receptor antagonist, on acute HPV in man. METHODS Ten normal volunteers were studied on two separate days. They either received pre-treatment with losartan 25, 50, 100, 100 mg respectively on four consecutive days or matched placebo. They were then rendered hypoxaemic, by breathing an N2/O2 mixture for 20 min to achieve an SaO2 of 85-90% adjusted for a further 20 min to achieve an SaO2 of 75-80%. Pulsed wave Doppler echocardiography was used to measure mean pulmonary artery pressure (MPAP), cardiac output and hence pulmonary vascular resistance (PVR). RESULTS Baseline MPAP and PVR (during normoxaemia) were unaffected by losartan pre-treatment compared with placebo. However, losartan significantly reduced MPAP at both levels of hypoxaemia compared with placebo: 14.7 +/- 0.7 vs 19.0 +/- 0.7 mmHg at an SaO2 85-90% (P < 0.01) and 20.0 +/- 0.7 vs 25.7 +/- 0.8 mmHg at an SaO2 75-80% (P < 0.05) respectively. Similarly losartan significantly reduced PVR compared to placebo: 191 +/- 9 vs 246 +/- 10 dyne.s.cm-5 at an SaO2 85-90% (P < 0.005) and 233 +/- 12 vs 293 +/- 18 dyne.s.cm-5 at an SaO2 75-80% (P < 0.05), respectively. Pre-treatment with losartan, however, had no significant effect on systemic vascular resistance although losartan compared to placebo resulted in a significant (P < 0.05) reduction in mean arterial pressure at an SaO2 75-80%: 78 +/- 2 vs 87 +/- 2 mmHg. CONCLUSIONS Losartan had no effect on baseline pulmonary haemodynamics but significantly attenuated acute hypoxic pulmonary vasoconstriction, suggesting that angiotensin II plays a role in modulating this response in man via its effects on the type 1 angiotensin II receptor.

UI MeSH Term Description Entries
D007093 Imidazoles Compounds containing 1,3-diazole, a five membered aromatic ring containing two nitrogen atoms separated by one of the carbons. Chemically reduced ones include IMIDAZOLINES and IMIDAZOLIDINES. Distinguish from 1,2-diazole (PYRAZOLES).
D008297 Male Males
D011651 Pulmonary Artery The short wide vessel arising from the conus arteriosus of the right ventricle and conveying unaerated blood to the lungs. Arteries, Pulmonary,Artery, Pulmonary,Pulmonary Arteries
D011945 Receptors, Angiotensin Cell surface proteins that bind ANGIOTENSINS and trigger intracellular changes influencing the behavior of cells. Angiotensin Receptor,Angiotensin Receptors,Angiotensin II Receptor,Angiotensin III Receptor,Receptor, Angiotensin II,Receptor, Angiotensin III,Receptor, Angiotensin
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D006339 Heart Rate The number of times the HEART VENTRICLES contract per unit of time, usually per minute. Cardiac Rate,Chronotropism, Cardiac,Heart Rate Control,Heartbeat,Pulse Rate,Cardiac Chronotropy,Cardiac Chronotropism,Cardiac Rates,Chronotropy, Cardiac,Control, Heart Rate,Heart Rates,Heartbeats,Pulse Rates,Rate Control, Heart,Rate, Cardiac,Rate, Heart,Rate, Pulse
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D000804 Angiotensin II An octapeptide that is a potent but labile vasoconstrictor. It is produced from angiotensin I after the removal of two amino acids at the C-terminal by ANGIOTENSIN CONVERTING ENZYME. The amino acid in position 5 varies in different species. To block VASOCONSTRICTION and HYPERTENSION effect of angiotensin II, patients are often treated with ACE INHIBITORS or with ANGIOTENSIN II TYPE 1 RECEPTOR BLOCKERS. Angiotensin II, Ile(5)-,Angiotensin II, Val(5)-,5-L-Isoleucine Angiotensin II,ANG-(1-8)Octapeptide,Angiotensin II, Isoleucine(5)-,Angiotensin II, Valine(5)-,Angiotensin-(1-8) Octapeptide,Isoleucine(5)-Angiotensin,Isoleucyl(5)-Angiotensin II,Valyl(5)-Angiotensin II,5 L Isoleucine Angiotensin II,Angiotensin II, 5-L-Isoleucine
D000860 Hypoxia Sub-optimal OXYGEN levels in the ambient air of living organisms. Anoxia,Oxygen Deficiency,Anoxemia,Deficiency, Oxygen,Hypoxemia,Deficiencies, Oxygen,Oxygen Deficiencies

Related Publications

D G Kiely, and R I Cargill, and B J Lipworth
January 1979, Giornale italiano di cardiologia,
D G Kiely, and R I Cargill, and B J Lipworth
May 2015, American journal of physiology. Heart and circulatory physiology,
D G Kiely, and R I Cargill, and B J Lipworth
December 1988, Journal of hypertension. Supplement : official journal of the International Society of Hypertension,
D G Kiely, and R I Cargill, and B J Lipworth
February 1986, Wiener klinische Wochenschrift,
D G Kiely, and R I Cargill, and B J Lipworth
January 1981, Journal of cardiovascular pharmacology,
D G Kiely, and R I Cargill, and B J Lipworth
April 2004, Respiratory physiology & neurobiology,
D G Kiely, and R I Cargill, and B J Lipworth
July 1996, Intensive care medicine,
D G Kiely, and R I Cargill, and B J Lipworth
June 1995, Respiration physiology,
D G Kiely, and R I Cargill, and B J Lipworth
July 2006, Nihon rinsho. Japanese journal of clinical medicine,
Copied contents to your clipboard!