Physiological release of excitatory amino acids. 1995

M Fillenz
University Laboratory of Physiology, Oxford, UK. fillenz@vax.ox.ac.uk

The contribution of in vivo monitoring to the study of glutamate release is reviewed. Physiological stimulation increases both glutamate and aspartate in the extracellular compartment of the brain and both amino acids show Ca(2+)-dependent K(+)-evoked release. However, the finding that only glutamate is stored in synaptic vesicles implies that glutamate is the excitatory transmitter. Released glutamate is taken up into both neurones and glia by glutamate transporters. Uptake of glutamate, in addition to clearing the synapse, has a number of additional functions. Uptake into glia leads to the release of glutamine, which is involved in the recycling of transmitter glutamate; uptake into both neurones and glia leads to the release of ascorbate; uptake into glia leads to an increase glycolysis and export of lactate, an energy substrate for neuronal metabolism. Reversal of the glutamate transporter accounts for the parallel release of glutamate and aspartate from the cytoplasmic compartment. The basal concentration of extracellular glutamate is in the micromolar range. Such levels could lead to desensitisation of both NMDA and non-NMDA receptors. The functional implications of the level of basal glutamate are difficult to assess at present in view of the existence of multiple glutamate receptor subunits with different functional properties and distributions.

UI MeSH Term Description Entries
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001519 Behavior The observable response of a man or animal to a situation. Acceptance Process,Acceptance Processes,Behaviors,Process, Acceptance,Processes, Acceptance
D001522 Behavior, Animal The observable response an animal makes to any situation. Autotomy Animal,Animal Behavior,Animal Behaviors
D017459 Receptors, Amino Acid Cell surface proteins that bind amino acids and trigger changes which influence the behavior of cells. Glutamate receptors are the most common receptors for fast excitatory synaptic transmission in the vertebrate central nervous system, and GAMMA-AMINOBUTYRIC ACID and glycine receptors are the most common receptors for fast inhibition. Amino Acid Receptors,Receptor, Amino Acid,Receptors, Amino Acids,Amino Acid Receptor,Amino Acids Receptors
D018377 Neurotransmitter Agents Substances used for their pharmacological actions on any aspect of neurotransmitter systems. Neurotransmitter agents include agonists, antagonists, degradation inhibitors, uptake inhibitors, depleters, precursors, and modulators of receptor function. Nerve Transmitter Substance,Neurohormone,Neurohumor,Neurotransmitter Agent,Nerve Transmitter Substances,Neurohormones,Neurohumors,Neuromodulator,Neuromodulators,Neuroregulator,Neuroregulators,Neurotransmitter,Neurotransmitters,Substances, Nerve Transmitter,Transmitter Substances, Nerve,Substance, Nerve Transmitter,Transmitter Substance, Nerve
D018528 ATP-Binding Cassette Transporters A family of MEMBRANE TRANSPORT PROTEINS that require ATP hydrolysis for the transport of substrates across membranes. The protein family derives its name from the ATP-binding domain found on the protein. ABC Transporter,ABC Transporters,ATP-Binding Cassette Transporter,ATP Binding Cassette Transporter,ATP Binding Cassette Transporters,Cassette Transporter, ATP-Binding,Transporter, ABC,Transporter, ATP-Binding Cassette,Transporters, ABC,Transporters, ATP-Binding Cassette
D018698 Glutamic Acid A non-essential amino acid naturally occurring in the L-form. Glutamic acid is the most common excitatory neurotransmitter in the CENTRAL NERVOUS SYSTEM. Aluminum L-Glutamate,Glutamate,Potassium Glutamate,D-Glutamate,Glutamic Acid, (D)-Isomer,L-Glutamate,L-Glutamic Acid,Aluminum L Glutamate,D Glutamate,Glutamate, Potassium,L Glutamate,L Glutamic Acid,L-Glutamate, Aluminum
D018846 Excitatory Amino Acids Endogenous amino acids released by neurons as excitatory neurotransmitters. Glutamic acid is the most common excitatory neurotransmitter in the brain. Aspartic acid has been regarded as an excitatory transmitter for many years, but the extent of its role as a transmitter is unclear. Amino Acids, Excitatory,Excitatory Amino Acid,Acid, Excitatory Amino,Acids, Excitatory Amino,Amino Acid, Excitatory
D027322 Amino Acid Transport System X-AG A family of POTASSIUM and SODIUM-dependent acidic amino acid transporters that demonstrate a high affinity for GLUTAMIC ACID and ASPARTIC ACID. Several variants of this system are found in neuronal tissue. Glutamate-Aspartate Transporter,Amino Acid Transport System XAG,GLAST Glutamate-Aspartate Transporters,Glutamate Translocase,Glutamate Transport Glycoprotein,Glutamate Transporter,Amino Acid Transport System X AG,GLAST Glutamate Aspartate Transporters,Glutamate Aspartate Transporter,Glutamate-Aspartate Transporters, GLAST,Transport Glycoprotein, Glutamate,Transporter, Glutamate-Aspartate,Transporters, GLAST Glutamate-Aspartate

Related Publications

M Fillenz
January 1986, Advances in experimental medicine and biology,
M Fillenz
November 1990, Trends in pharmacological sciences,
M Fillenz
August 1999, Natural product reports,
M Fillenz
April 1998, Natural product reports,
M Fillenz
October 2002, Natural product reports,
M Fillenz
April 1991, No to shinkei = Brain and nerve,
M Fillenz
June 2000, Journal of psychopharmacology (Oxford, England),
Copied contents to your clipboard!