Mechanism of protection of lobenzarit against paracetamol-induced toxicity in rat hepatocytes. 1995

D Remirez, and J N Commandeur, and E Groot, and N P Vermeulen
Leiden, Amsterdam Center for Drug Research (LACDR), Department of Pharmacochemistry, Vriji Universiteit, Amsterdam, Netherlands.

The protective effects of lobenzarit, an antioxidative agent and antirheumatic drug, on the cytotoxicity of paracetamol in rat hepatocytes were studied, as well as the inhibitory effects of lobenzarit on cytochrome P-450s and glutathione S-transferases (GSTs) in rat liver. Paracetamol was selected as a model toxin, since it is known to be bioactivated by specific cytochrome P-450s presumably to N-acetyl-p-benzoquinoneimine, a reactive metabolite which upon overdosage of paracetamol causes protein and non-protein thiol depletion, lipid peroxidation and cytotoxicity measurable as LDH leakage. At concentrations of lobenzarit of 0.2 and 0.3 mM, added 30 min before paracetamol, the drug prevented paracetamol-induced leakage of lactate dehydrogenase (LDH) almost completely and lipid peroxidation (LPO) and depletion of glutathione (GSH) substantially and also the formation of the 3-glutathionyl conjugate of paracetamol. However, at a concentration of 0.05 mM Lobenzarit did not protect anymore against the paracetamol toxicity, When added to the hepatocytes 1 h and 2 h before paracetamol, 0.05 and 0.2 and 0.3 mM concentrations of lobenzarit did not protect against the cytotoxicity induced by paracetamol either. Lobenzarit did not inhibit cytochromes P-450 1A1/1A2, 2B1/2B2 and 2E1 which were measured as ethoxyresorufin O-deethylation (EROD) activity in beta-naphthoflavone-induced rat liver microsomes, as pentoxyresorufin de-pentylation (PROD) activity in phenobarbital-induced microsomes and as p-nitrophenol hydroxylation (PNPH) activity in pyrazol-induced microsomes. Lobenzarit did not show inhibition of glutathione S-transferase (GST) activity towards 1-chloro-2,4-dinitrobenzene (CDNB) in cytosol from liver of rats treated with phenobarbital, pyrazol and beta-naphthoflavone either. It is concluded that the cytoprotective effect of lobenzarit is most likely due to its antioxidant effects and/or to its ability to stimulate GSH reductase.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D007770 L-Lactate Dehydrogenase A tetrameric enzyme that, along with the coenzyme NAD+, catalyzes the interconversion of LACTATE and PYRUVATE. In vertebrates, genes for three different subunits (LDH-A, LDH-B and LDH-C) exist. Lactate Dehydrogenase,Dehydrogenase, L-Lactate,Dehydrogenase, Lactate,L Lactate Dehydrogenase
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine
D005982 Glutathione Transferase A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite. Glutathione S-Alkyltransferase,Glutathione S-Aryltransferase,Glutathione S-Epoxidetransferase,Ligandins,S-Hydroxyalkyl Glutathione Lyase,Glutathione Organic Nitrate Ester Reductase,Glutathione S-Transferase,Glutathione S-Transferase 3,Glutathione S-Transferase A,Glutathione S-Transferase B,Glutathione S-Transferase C,Glutathione S-Transferase III,Glutathione S-Transferase P,Glutathione Transferase E,Glutathione Transferase mu,Glutathione Transferases,Heme Transfer Protein,Ligandin,Yb-Glutathione-S-Transferase,Glutathione Lyase, S-Hydroxyalkyl,Glutathione S Alkyltransferase,Glutathione S Aryltransferase,Glutathione S Epoxidetransferase,Glutathione S Transferase,Glutathione S Transferase 3,Glutathione S Transferase A,Glutathione S Transferase B,Glutathione S Transferase C,Glutathione S Transferase III,Glutathione S Transferase P,Lyase, S-Hydroxyalkyl Glutathione,P, Glutathione S-Transferase,Protein, Heme Transfer,S Hydroxyalkyl Glutathione Lyase,S-Alkyltransferase, Glutathione,S-Aryltransferase, Glutathione,S-Epoxidetransferase, Glutathione,S-Transferase 3, Glutathione,S-Transferase A, Glutathione,S-Transferase B, Glutathione,S-Transferase C, Glutathione,S-Transferase III, Glutathione,S-Transferase P, Glutathione,S-Transferase, Glutathione,Transfer Protein, Heme,Transferase E, Glutathione,Transferase mu, Glutathione,Transferase, Glutathione,Transferases, Glutathione
D006899 Mixed Function Oxygenases Widely distributed enzymes that carry out oxidation-reduction reactions in which one atom of the oxygen molecule is incorporated into the organic substrate; the other oxygen atom is reduced and combined with hydrogen ions to form water. They are also known as monooxygenases or hydroxylases. These reactions require two substrates as reductants for each of the two oxygen atoms. There are different classes of monooxygenases depending on the type of hydrogen-providing cosubstrate (COENZYMES) required in the mixed-function oxidation. Hydroxylase,Hydroxylases,Mixed Function Oxidase,Mixed Function Oxygenase,Monooxygenase,Monooxygenases,Mixed Function Oxidases,Function Oxidase, Mixed,Function Oxygenase, Mixed,Oxidase, Mixed Function,Oxidases, Mixed Function,Oxygenase, Mixed Function,Oxygenases, Mixed Function

Related Publications

D Remirez, and J N Commandeur, and E Groot, and N P Vermeulen
October 1994, Biochemical pharmacology,
D Remirez, and J N Commandeur, and E Groot, and N P Vermeulen
April 1998, Chemico-biological interactions,
D Remirez, and J N Commandeur, and E Groot, and N P Vermeulen
February 1979, Toxicology,
D Remirez, and J N Commandeur, and E Groot, and N P Vermeulen
October 1993, Journal of ethnopharmacology,
D Remirez, and J N Commandeur, and E Groot, and N P Vermeulen
February 1992, British journal of pharmacology,
D Remirez, and J N Commandeur, and E Groot, and N P Vermeulen
July 2001, Biological & pharmaceutical bulletin,
D Remirez, and J N Commandeur, and E Groot, and N P Vermeulen
January 1990, Toxicology in vitro : an international journal published in association with BIBRA,
D Remirez, and J N Commandeur, and E Groot, and N P Vermeulen
September 1982, The Journal of pharmacology and experimental therapeutics,
D Remirez, and J N Commandeur, and E Groot, and N P Vermeulen
January 1978, Biochemical pharmacology,
Copied contents to your clipboard!