Serrate and wingless cooperate to induce vestigial gene expression and wing formation in Drosophila. 1995

J P Couso, and E Knust, and A Martinez Arias
Department of Zoology, University of Cambridge, UK.

BACKGROUND The appendages of insects, like the limbs of vertebrates, grow out of the body wall after the establishment of a proximo-distal axis among a group of primordial cells. In Drosophila, the wing develops in the limbless larva from one of the imaginal discs of the thorax, which give rise to the adult epidermis. The earliest identified requirement in wing development is for the induction of vestigial (vg) gene expression at the interface between ventral cells and dorsal cells of the wing disc. It has been proposed that this event requires two reciprocal signals--one from the dorsal to the ventral cells and the other from the ventral to the dorsal cells--which trigger vg expression at the presumptive wing margin and hence initiate the development of the wing tissue. RESULTS We have identified four genes--Serrate (Ser), wingless (wg), Notch and Suppressor of Hairless (Su(H))--whose activity is required during the second and early third larval instars for the expression of vg. Analysis of the functions and patterns of expression of these genes at the time of the inductive event indicates that the Ser protein acts as a dorsal signal, and the Wg protein as a ventral signal for the induction of vg expression. Furthermore, the expression of both Ser and Wg is sufficient to trigger ectopic wing development in the wing disc and leg discs. The product of the Notch gene, which encodes a receptor, is also required for this event and we suggest that its role is to integrate the inputs of Ser and Wg. CONCLUSIONS We show that the induction of vg, which initiates wing development in Drosophila, requires the combined activities of Ser, wg and Notch. Based on the patterns of expression and requirements for Ser and wg in this process, we propose that Ser is a dorsal signal and that Wg is a ventral signal, and that their combination at the dorso-ventral interface activates the Notch receptor and leads to vg expression.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D011518 Proto-Oncogene Proteins Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D002135 Calcium-Binding Proteins Proteins to which calcium ions are bound. They can act as transport proteins, regulator proteins, or activator proteins. They typically contain EF HAND MOTIFS. Calcium Binding Protein,Calcium-Binding Protein,Calcium Binding Proteins,Binding Protein, Calcium,Binding Proteins, Calcium,Protein, Calcium Binding,Protein, Calcium-Binding
D004330 Drosophila A genus of small, two-winged flies containing approximately 900 described species. These organisms are the most extensively studied of all genera from the standpoint of genetics and cytology. Fruit Fly, Drosophila,Drosophila Fruit Flies,Drosophila Fruit Fly,Drosophilas,Flies, Drosophila Fruit,Fly, Drosophila Fruit,Fruit Flies, Drosophila
D000072099 Serrate-Jagged Proteins Cell surface proteins that consist of multiple extracellular EPIDERMAL GROWTH FACTOR - like repeat sequences (EGF repeats), including calcium-binding EGF repeats. They function as transmembrane ligands for NOTCH RECEPTORS to control CELL DIFFERENTIATION during development. Jagged Proteins,Serrate Protein,Serrate Proteins,Serrate Jagged Proteins
D000072100 Jagged-1 Protein A serrate-jagged protein that functions as a ligand for NOTCH RECEPTORS. It may regulate CELL DIFFERENTIATION in HEMATOPOIESIS and PHYSIOLOGIC ANGIOGENESIS. Mutations in the Jagged-1 gene are associated with ALAGILLE SYNDROME 1. Alagille Syndrome Protein,CD339 Antigen,Jagged-1,Jagged1 Protein,Serrate-1 Protein,Serrate1 Protein,Antigen, CD339,Jagged 1,Jagged 1 Protein,Serrate 1 Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013909 Thorax The upper part of the trunk between the NECK and the ABDOMEN. It contains the chief organs of the circulatory and respiratory systems. (From Stedman, 25th ed) Chest,Thoraces,Chests,Thorace

Related Publications

J P Couso, and E Knust, and A Martinez Arias
April 2003, Development (Cambridge, England),
J P Couso, and E Knust, and A Martinez Arias
March 2000, Current biology : CB,
J P Couso, and E Knust, and A Martinez Arias
January 1999, Development genes and evolution,
J P Couso, and E Knust, and A Martinez Arias
July 2016, Development genes and evolution,
J P Couso, and E Knust, and A Martinez Arias
December 1998, Genes & development,
J P Couso, and E Knust, and A Martinez Arias
October 1997, Molecular & general genetics : MGG,
J P Couso, and E Knust, and A Martinez Arias
December 1998, Genes & development,
J P Couso, and E Knust, and A Martinez Arias
April 1999, Current biology : CB,
Copied contents to your clipboard!