Characterisation of GABAA receptor gamma subunit expression by magnocellular neurones in rat hypothalamus. 1995

V S Fenelon, and A E Herbison
Department of Neurobiology, Babraham Institute, Cambridge, UK.

Gamma-aminobutyric acid (GABA) is known to inhibit the electrical and secretory activity of oxytocin and vasopressin neurones located in the supraoptic and paraventricular nuclei following osmotic, cardiovascular or suckling stimuli. To understand fully the nature of GABA actions on these magnocellular neurones it is important to define the heteropentameric GABAA receptor proteins they express. In the present study, single and dual labelling in situ hybridisation and immunocytochemical experiments were undertaken to define the GABAA receptor gamma subunits expressed by these cells. In situ hybridisation with 35S-labelled antisense oligonucleotides showed that all magnocellular neurones in the supraoptic and paraventricular nuclei of the female rat expressed mRNA encoding the gamma 2 subunit of the GABAA receptor but not the gamma 1 or gamma 3 subunits. Immunocytochemical experiments using a specific polyclonal rabbit antibody directed against the gamma 2 subunit of the GABAA receptor showed that all hypothalamic magnocellular neurones were strongly immunoreactive for gamma 2 subunit protein. Dual in situ hybridisation experiments using the gamma 2 subunit 35 S-labelled oligonucleotide with alkaline phosphatase-labelled antisense oligonucleotides specific for either oxytocin or vasopressin revealed that essentially all oxytocin and vasopressin neurones in both the supraoptic and paraventricular nuclei expressed the gamma 2 subunit of the GABAA receptor. Similarly, sequential double immunoperoxidase staining revealed that all oxytocin and vasopressin neurones in both magnocellular nuclei of the hypothalamus were immunoreactive for the gamma 2 subunit. This study shows that only the gamma 2 subunit of the GABAA receptor gamma subunit family is expressed by hypothalamic oxytocin and vasopressin neurones. In conjunction with our previous results, these findings indicate that individual magnocellular neurones express a complement of alpha 1, alpha 2, beta 2, beta 3 and gamma 2 subunits of the GABAA receptor. The observation of strong gamma 2 subunit expression by neurones known to also express alpha 1 and alpha 2 subunit proteins suggests that these magnocellular cells may express GABAA receptors with both benzodiazepine type-1 and type-2 pharmacology.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010121 Oxytocin A nonapeptide hormone released from the neurohypophysis (PITUITARY GLAND, POSTERIOR). It differs from VASOPRESSIN by two amino acids at residues 3 and 8. Oxytocin acts on SMOOTH MUSCLE CELLS, such as causing UTERINE CONTRACTIONS and MILK EJECTION. Ocytocin,Pitocin,Syntocinon
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013194 Staining and Labeling The marking of biological material with a dye or other reagent for the purpose of identifying and quantitating components of tissues, cells or their extracts. Histological Labeling,Staining,Histological Labelings,Labeling and Staining,Labeling, Histological,Labelings, Histological,Stainings
D014667 Vasopressins Antidiuretic hormones released by the NEUROHYPOPHYSIS of all vertebrates (structure varies with species) to regulate water balance and OSMOLARITY. In general, vasopressin is a nonapeptide consisting of a six-amino-acid ring with a cysteine 1 to cysteine 6 disulfide bridge or an octapeptide containing a CYSTINE. All mammals have arginine vasopressin except the pig with a lysine at position 8. Vasopressin, a vasoconstrictor, acts on the KIDNEY COLLECTING DUCTS to increase water reabsorption, increase blood volume and blood pressure. Antidiuretic Hormone,Antidiuretic Hormones,beta-Hypophamine,Pitressin,Vasopressin,Vasopressin (USP),Hormone, Antidiuretic,beta Hypophamine

Related Publications

V S Fenelon, and A E Herbison
August 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience,
V S Fenelon, and A E Herbison
February 1992, Brain research. Molecular brain research,
V S Fenelon, and A E Herbison
July 2004, Brain research. Developmental brain research,
V S Fenelon, and A E Herbison
November 1991, Brain research bulletin,
V S Fenelon, and A E Herbison
October 2004, Neuroreport,
V S Fenelon, and A E Herbison
August 1995, European journal of pharmacology,
Copied contents to your clipboard!