Application of quantitative RT-PCR to the analysis of dopamine receptor mRNA levels in rat striatum. 1995

S L Vrana, and B W Kluttz, and K E Vrana
Department of Physiology and Pharmacology, Bowman Gray School of Medicine, Winston-Salem, NC 27157-1083, USA.

A quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) procedure has been developed which selectively amplifies and quantifies the two isoforms of the dopamine D2 receptor. Variability is corrected by the inclusion of a D2 dopamine receptor mRNA standard within each reaction. The internal standard was generated by introducing a point mutation within a D2 cDNA clone that created a unique restriction site within the amplified region. An in vitro transcribed RNA for the internal mutant control is added to the RNA isolated from brain tissue and the mixture is subjected to RT-PCR, digestion with the restriction enzyme, separation of the products by PAGE, and quantification by direct analysis of radioactivity incorporated during the PCR step. The standard is amplified, in the same reaction as the experimental RNA, using the same primers and RT-PCR conditions. In this manner, the effects of contaminants of the RNA preparation which could affect the amplification procedure are assessed. To insure that the amplification is linear, the number of PCR cycles is minimized. This adaptation avoids 'competitive PCR' and provides for a linear response. Moreover, to obviate non-specific co-amplification, primer annealing steps are performed at or above the melting temperature for the primers, thus increasing signal-to-noise ratios. Finally, primer pairs have been designed which permit amplification of specific fragments for each of the five rat dopamine receptor subtypes. These fragments have unique sizes and so can be differentiated when simultaneously amplified in the same RNA preparations.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011954 Receptors, Dopamine Cell-surface proteins that bind dopamine with high affinity and trigger intracellular changes influencing the behavior of cells. Dopamine Receptors,Dopamine Receptor,Receptor, Dopamine
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

S L Vrana, and B W Kluttz, and K E Vrana
September 1996, European cytokine network,
S L Vrana, and B W Kluttz, and K E Vrana
November 1995, The American journal of physiology,
S L Vrana, and B W Kluttz, and K E Vrana
October 1997, Journal of molecular neuroscience : MN,
S L Vrana, and B W Kluttz, and K E Vrana
January 1998, Sheng wu hua xue yu sheng wu wu li xue bao Acta biochimica et biophysica Sinica,
S L Vrana, and B W Kluttz, and K E Vrana
November 1991, Brain research. Developmental brain research,
S L Vrana, and B W Kluttz, and K E Vrana
January 1999, Methods in molecular biology (Clifton, N.J.),
S L Vrana, and B W Kluttz, and K E Vrana
January 2005, Cancer genomics & proteomics,
S L Vrana, and B W Kluttz, and K E Vrana
January 2005, Clinical chemistry and laboratory medicine,
Copied contents to your clipboard!