Envelopments of Sindbis virus: synthesis and organization of proteins in cells infected with wild type and maturation-defective mutants. 1977

J F Smith, and D T Brown

The synthesis and organization of Sindbis virus structural proteins was investigated in BHK cells infected with wild-type virus (SVHR) or temperature-sensitive (ts) mutants defective in maturation. Cells infected with ts-23 or ts-20 (complementation groups D and E) were similar in the polypeptides synthesized at the nonpermissive temperature and differed from SVHR-infected cells in that the envelope protein E2 was not cleaved from the PE2 precursor. Data from experiments utilizing pulse-chase procedures or protein synthesis inhibitors indicated that although infectious virions were released from cells infected with these mutants in shift-down experiments, the particles were produced almost exclusively from proteins synthesized after the return to permissive temperature. This suggests that a stable complex may be formed among the structural proteins before budding. A membrane fraction isolated from cells infected with either ts mutants or SVHR contained the PE2, E1, and C polypeptides, whereas E2 was restricted to fractions obtained from SVHR-infected cells. Although equivalent amounts of virus-specific protein were synthesized in cells infected with either mutant and the cells contained qualitatively the same proteins in the isolated membranes, cells infected with ts-23 did not have virus-specific proteins exposed on their surface that could be detected by ferritin-conjugated antibody-labeling procedures or lactoperoxidase-mediated iodination. In contrast, ts-20-infected cells had significant amounts of viral protein, mainly E1, that could be detected on the plasma membrane by either procedure. Iodine was incorporated into E1 and E2 on the surface of SVHR-infected cells in the same relative amounts as seen in iodinated virions. PE2, however, although present in membranes, could not be iodinated on the surface of infected cells under any of the conditions used in this study. We also monitored the relative efficiency with which these viral proteins could be removed from intact cells by dilute solutions of nonionic detergents. The results indicated that E2 was most efficiently removed, followed by E1. PE2 (the precursor to E2) and C remained associated with the cell and could be subsequently isolated in the membrane fraction.

UI MeSH Term Description Entries
D009024 Morphogenesis The development of anatomical structures to create the form of a single- or multi-cell organism. Morphogenesis provides form changes of a part, parts, or the whole organism.
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010452 Peptide Biosynthesis The production of PEPTIDES or PROTEINS by the constituents of a living organism. The biosynthesis of proteins on RIBOSOMES following an RNA template is termed translation (TRANSLATION, GENETIC). There are other, non-ribosomal peptide biosynthesis (PEPTIDE BIOSYNTHESIS, NUCLEIC ACID-INDEPENDENT) mechanisms carried out by PEPTIDE SYNTHASES and PEPTIDYLTRANSFERASES. Further modifications of peptide chains yield functional peptide and protein molecules. Biosynthesis, Peptide
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D006023 Glycoproteins Conjugated protein-carbohydrate compounds including MUCINS; mucoid, and AMYLOID glycoproteins. C-Glycosylated Proteins,Glycosylated Protein,Glycosylated Proteins,N-Glycosylated Proteins,O-Glycosylated Proteins,Glycoprotein,Neoglycoproteins,Protein, Glycosylated,Proteins, C-Glycosylated,Proteins, Glycosylated,Proteins, N-Glycosylated,Proteins, O-Glycosylated
D012845 Sindbis Virus The type species of ALPHAVIRUS normally transmitted to birds by CULEX mosquitoes in Egypt, South Africa, India, Malaya, the Philippines, and Australia. It may be associated with fever in humans. Serotypes (differing by less than 17% in nucleotide sequence) include Babanki, Kyzylagach, and Ockelbo viruses. Babanki virus,Kyzylagach virus,Ockelbo Virus
D013501 Surface-Active Agents Agents that modify interfacial tension of water; usually substances that have one lipophilic and one hydrophilic group in the molecule; includes soaps, detergents, emulsifiers, dispersing and wetting agents, and several groups of antiseptics. Surface Active Agent,Surface-Active Agent,Surfactant,Surfactants,Tenside,Amphiphilic Agents,Surface Active Agents,Tensides,Active Agent, Surface,Active Agents, Surface,Agent, Surface Active,Agent, Surface-Active,Agents, Amphiphilic,Agents, Surface Active,Agents, Surface-Active
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures

Related Publications

J F Smith, and D T Brown
November 1970, Journal of virology,
J F Smith, and D T Brown
February 1977, Journal of virology,
J F Smith, and D T Brown
January 1974, Medical microbiology and immunology,
J F Smith, and D T Brown
February 1982, Journal of virology,
Copied contents to your clipboard!