Stimulation of fibroblast cell growth, matrix production, and granulation tissue formation by connective tissue growth factor. 1996

K Frazier, and S Williams, and D Kothapalli, and H Klapper, and G R Grotendorst
Department of Cell Biology and Anatomy, University of Miami School of Medicine, FL 33136, USA.

Connective tissue growth factor (CTGF) is a 36-to 38-kDa peptide that is selectively induced by transforming growth factor-beta (TGF-beta) in fibroblastic cell types. We compared the biologic activities of CTGF with TGF-beta on fibroblasts in culture and in animal models of fibroplasia. CTGF was active as a mitogen in monolayer cultures of normal rat kidney fibroblasts. CTGF did not stimulate anchorage-independent growth of NRK fibroblasts, however, or inhibit the growth of mink lung epithelial cells, distinguishing CTGF's growth-regulatory activities from those of TGF-beta. In NRK fibroblasts, both TGF-beta and CTGF significantly increased the transcripts encoding alpha 1 type I collagen, alpha 5 integrin, and fibronectin. Stimulation of type I collagen and fibronectin protein synthesis by TGF-beta and CTGF was confirmed by pulse labeling of cells with [35S]methionine. Subcutaneous injection of TGF-beta and CTGF into neonatal NIH Swiss mice resulted in a large stimulation of granulation tissue and fibrosis at the site of injection. In situ hybridization studies revealed that TGF-beta injection induced high levels of CTGF mRNA in the dermal fibroblasts at the injection site, demonstrating that TGF-beta can induce the expression of CTGF in connective tissue cells in vivo. No CTGF transcripts were detected in the epidermal cells in either control or TGF-beta-injected skin or in fibroblasts in control (saline-injected) skin. These results demonstrate that, like TGF-beta, CTGF can induce connective tissue cell proliferation and extracellular matrix synthesis.

UI MeSH Term Description Entries
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D008934 Mitogens Substances that stimulate mitosis and lymphocyte transformation. They include not only substances associated with LECTINS, but also substances from streptococci (associated with streptolysin S) and from strains of alpha-toxin-producing staphylococci. (Stedman, 25th ed) Mitogen,Phytomitogen,Phytomitogens
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D005109 Extracellular Matrix A meshwork-like substance found within the extracellular space and in association with the basement membrane of the cell surface. It promotes cellular proliferation and provides a supporting structure to which cells or cell lysates in culture dishes adhere. Matrix, Extracellular,Extracellular Matrices,Matrices, Extracellular
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D006097 Granulation Tissue A vascular connective tissue formed on the surface of a healing wound, ulcer, or inflamed tissue. It consists of new capillaries and an infiltrate containing lymphoid cells, macrophages, and plasma cells. Granulation Tissues,Tissue, Granulation,Tissues, Granulation
D006131 Growth Inhibitors Endogenous or exogenous substances which inhibit the normal growth of human and animal cells or micro-organisms, as distinguished from those affecting plant growth ( Cell Growth Inhibitor,Cell Growth Inhibitors,Growth Inhibitor,Growth Inhibitor, Cell,Growth Inhibitors, Cell,Inhibitor, Cell Growth,Inhibitor, Growth,Inhibitors, Cell Growth,Inhibitors, Growth

Related Publications

K Frazier, and S Williams, and D Kothapalli, and H Klapper, and G R Grotendorst
October 1987, The Biochemical journal,
K Frazier, and S Williams, and D Kothapalli, and H Klapper, and G R Grotendorst
February 1980, The Journal of clinical investigation,
K Frazier, and S Williams, and D Kothapalli, and H Klapper, and G R Grotendorst
October 1996, Arzneimittel-Forschung,
K Frazier, and S Williams, and D Kothapalli, and H Klapper, and G R Grotendorst
December 1985, The Journal of clinical investigation,
K Frazier, and S Williams, and D Kothapalli, and H Klapper, and G R Grotendorst
January 2008, Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society,
K Frazier, and S Williams, and D Kothapalli, and H Klapper, and G R Grotendorst
October 2006, The Journal of dermatology,
K Frazier, and S Williams, and D Kothapalli, and H Klapper, and G R Grotendorst
June 2004, The Journal of pathology,
K Frazier, and S Williams, and D Kothapalli, and H Klapper, and G R Grotendorst
September 2008, The journal of gene medicine,
K Frazier, and S Williams, and D Kothapalli, and H Klapper, and G R Grotendorst
January 2003, Connective tissue research,
K Frazier, and S Williams, and D Kothapalli, and H Klapper, and G R Grotendorst
January 2007, Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society,
Copied contents to your clipboard!