Accelerated deamination of cytosine residues in UV-induced cyclobutane pyrimidine dimers leads to CC-->TT transitions. 1996

W Peng, and B R Shaw
Department of Chemistry, P. M. Gross Chemical Laboratory, Duke University, Durham, North Carolina 27708, USA.

The rate of UV-induced deamination of cytosine to uracil at a specific site in double-stranded (ds) DNA was monitored using a genetic reversion assay. M13mp2C141 ds DNA was exposed to 160 J/m2 UV (254 nm), incubated at 37 degrees C, pH 7.4, for various time intervals to allow for deamination, and treated with Escherichia coli photolyase in the presence of 365 nm light to reverse cyclobutane-type pyrimidine dimers. Upon transfection into uracil-glycosylase deficient (ung-) E. coli cells, the mutation (i.e., reversion) frequencies in the CCCC target sequence increased greatly with post-UV time of incubation at 37 degrees C, nearly doubling every day that the DNA had been held at 37 degrees C. After 8 days, the reversion frequencies had increased by two orders of magnitude upon transfection into ung- cells, relative to isogenic ung+ cells, indicating that most of the mutations arising in UV/photolyase-treated ds DNA were C-->T mutations mediated by a uracil intermediate. Sequencing of the revertants revealed that all mutations were single C-->T or tandem double CC-->TT mutations. An increasing percentage of tandem double CC-->TT mutations was found with longer post-UV incubation times, yet none occurred if the post-UV delay time step was omitted before photoreversal. After a 4-day delay between UV and photoreversal at 37 degrees C, greater than 84% of the total revertants had tandem double CC-->TT mutations. Thus, the generation of a tandem double mutation is a time-dependent process that arises in DNA after the initial UV exposure. The rate of appearance (with a pseudo-first-order rate constant ca. 10(-6) s-1) of tandem double mutations during incubation of UV-irradiated DNA is inconsistent with two random, independently occurring mutational events and suggests a concerted deamination of both residues in a tandem cytosine pyrimidine (C < > C) dimer. Considering that deamination in a C < > C dimer occurred here with a half-life of ca. 5 days, in contrast to the measured half-life of ca. 20,000 years for spontaneous (non-UV-treated) cytosine deamination for the same target, these studies show that the formation of pyrimidine dimers in DNA increases the rate of deamination by six orders of magnitude, leading to the accelerated formation of single C-->T and tandem double CC-->TT mutations.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007763 Lac Operon The genetic unit consisting of three structural genes, an operator and a regulatory gene. The regulatory gene controls the synthesis of the three structural genes: BETA-GALACTOSIDASE and beta-galactoside permease (involved with the metabolism of lactose), and beta-thiogalactoside acetyltransferase. Lac Gene,LacZ Genes,Lactose Operon,Gene, Lac,Gene, LacZ,Genes, Lac,Genes, LacZ,Lac Genes,Lac Operons,LacZ Gene,Lactose Operons,Operon, Lac,Operon, Lactose,Operons, Lac,Operons, Lactose
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009699 N-Glycosyl Hydrolases A class of enzymes involved in the hydrolysis of the N-glycosidic bond of nitrogen-linked sugars. Glycoside Hydrolases, Nitrogen-linked,Hydrolases, N-Glycosyl,Nucleosidase,Nucleosidases,Nucleoside Hydrolase,Nitrogen-linked Glycoside Hydrolases,Nucleoside Hydrolases,Glycoside Hydrolases, Nitrogen linked,Hydrolase, Nucleoside,Hydrolases, N Glycosyl,Hydrolases, Nitrogen-linked Glycoside,Hydrolases, Nucleoside,N Glycosyl Hydrolases,Nitrogen linked Glycoside Hydrolases
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D011740 Pyrimidine Dimers Dimers found in DNA chains damaged by ULTRAVIOLET RAYS. They consist of two adjacent PYRIMIDINE NUCLEOTIDES, usually THYMINE nucleotides, in which the pyrimidine residues are covalently joined by a cyclobutane ring. These dimers block DNA REPLICATION. Cyclobutane Pyrimidine Dimer,Cyclobutane-Pyrimidine Dimer,Cytosine-Thymine Dimer,Pyrimidine Dimer,Thymine Dimer,Thymine Dimers,Cyclobutane-Pyrimidine Dimers,Cytosine-Thymine Dimers,Thymine-Cyclobutane Dimer,Thymine-Thymine Cyclobutane Dimer,Cyclobutane Dimer, Thymine-Thymine,Cyclobutane Dimers, Thymine-Thymine,Cyclobutane Pyrimidine Dimers,Cytosine Thymine Dimer,Cytosine Thymine Dimers,Pyrimidine Dimer, Cyclobutane,Pyrimidine Dimers, Cyclobutane,Thymine Cyclobutane Dimer,Thymine Thymine Cyclobutane Dimer,Thymine-Cyclobutane Dimers,Thymine-Thymine Cyclobutane Dimers
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D003596 Cytosine A pyrimidine base that is a fundamental unit of nucleic acids.
D004255 Deoxyribodipyrimidine Photo-Lyase An enzyme that catalyzes the reactivation by light of UV-irradiated DNA. It breaks two carbon-carbon bonds in PYRIMIDINE DIMERS in DNA. DNA Photolyase,DNA Photoreactivating Enzyme,Photoreactivating Enzyme,Photoreactivation Enzyme,DNA Photolyases,Deoxyribodipyrimidine Photolyase,Photolyase,Photolyases,Deoxyribodipyrimidine Photo Lyase,Photo-Lyase, Deoxyribodipyrimidine,Photolyase, DNA,Photolyase, Deoxyribodipyrimidine,Photolyases, DNA,Photoreactivating Enzyme, DNA

Related Publications

W Peng, and B R Shaw
October 1986, Molecular and cellular biology,
W Peng, and B R Shaw
July 2010, Analytical and bioanalytical chemistry,
W Peng, and B R Shaw
January 1978, Molekuliarnaia biologiia,
W Peng, and B R Shaw
November 2023, Chemical communications (Cambridge, England),
W Peng, and B R Shaw
August 1999, Photochemistry and photobiology,
Copied contents to your clipboard!