Carbohydrate and protein-based inhibitors of porcine pancreatic alpha-amylase: structure analysis and comparison of their binding characteristics. 1996

M Machius, and L Vértesy, and R Huber, and G Wiegand
Max-Planck-Institut für Biochemie, Martinsried, Germany.

The crystal structures of porcine pancreatic alpha-amylase isozyme II (PPA II) in its free form and complexed with the trestatin A derived pseudo-octasaccharide V-1532 have been determined using Patterson search techniques at resolutions of 2.3 and 2.2 angstroms, respectively. Seven rings of the competitive inhibitor V-1532 could be detected in the active site region as well as two maltose units in secondary binding sites on the surface. V-1532 occupies the five central sugar binding subsites similar to the PPA/acarbose structure. A sixth ring exists at the reducing end, connecting two symmetry related PPA molecules. The seventh moiety, a 6-hydroxymethylconduritol ring, is located at the non-reducing end. The electron density for this ring is relatively weak, indicating considerable disorder. This study shows that PPA is able to accommodate more than five rings in the active site region, but that additional rings would increase the binding affinity only slightly, which is in accordance with kinetic experiments. A comparison of the structures of free PPA, PPA/V-1532 and PPA/Tendamistat shows the characteristic conformational changes that accompany inhibitor binding and distinguish pseudo-oligosaccharide inhibitors from proteinaceous inhibitors. Although both classes of inhibitors block the sugar binding subsites in the active site region, the extreme specificity and binding affinity of the proteinaceous inhibitors is probably due to an intricate interaction pattern involving areas further away from the catalytic center.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009844 Oligosaccharides Carbohydrates consisting of between two (DISACCHARIDES) and ten MONOSACCHARIDES connected by either an alpha- or beta-glycosidic link. They are found throughout nature in both the free and bound form. Oligosaccharide
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D002236 Carbohydrate Conformation The characteristic 3-dimensional shape of a carbohydrate. Carbohydrate Linkage,Carbohydrate Conformations,Carbohydrate Linkages,Conformation, Carbohydrate,Conformations, Carbohydrate,Linkage, Carbohydrate,Linkages, Carbohydrate
D002240 Carbohydrate Sequence The sequence of carbohydrates within POLYSACCHARIDES; GLYCOPROTEINS; and GLYCOLIPIDS. Carbohydrate Sequences,Sequence, Carbohydrate,Sequences, Carbohydrate
D003460 Crystallization The formation of crystalline substances from solutions or melts. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Crystalline Polymorphs,Polymorphism, Crystallization,Crystal Growth,Polymorphic Crystals,Crystal, Polymorphic,Crystalline Polymorph,Crystallization Polymorphism,Crystallization Polymorphisms,Crystals, Polymorphic,Growth, Crystal,Polymorph, Crystalline,Polymorphic Crystal,Polymorphisms, Crystallization,Polymorphs, Crystalline
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D000516 alpha-Amylases Enzymes that catalyze the endohydrolysis of 1,4-alpha-glycosidic linkages in STARCH; GLYCOGEN; and related POLYSACCHARIDES and OLIGOSACCHARIDES containing 3 or more 1,4-alpha-linked D-glucose units. Taka-Amylase A,alpha-Amylase,Alpha-Amylase Bayer,Maxilase,Mégamylase,alpha-1,4-D-Glucanglucanohydrolase,Alpha Amylase Bayer,AlphaAmylase Bayer,Taka Amylase A,TakaAmylase A,alpha 1,4 D Glucanglucanohydrolase,alpha Amylase,alpha Amylases
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M Machius, and L Vértesy, and R Huber, and G Wiegand
March 1999, Biochimica et biophysica acta,
M Machius, and L Vértesy, and R Huber, and G Wiegand
February 1992, Journal of biochemistry,
M Machius, and L Vértesy, and R Huber, and G Wiegand
April 1985, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
M Machius, and L Vértesy, and R Huber, and G Wiegand
November 1996, European journal of biochemistry,
M Machius, and L Vértesy, and R Huber, and G Wiegand
February 1987, The Journal of biological chemistry,
M Machius, and L Vértesy, and R Huber, and G Wiegand
October 1968, Analytical biochemistry,
M Machius, and L Vértesy, and R Huber, and G Wiegand
February 1973, Biochimica et biophysica acta,
M Machius, and L Vértesy, and R Huber, and G Wiegand
November 1984, Biochemistry,
M Machius, and L Vértesy, and R Huber, and G Wiegand
April 1995, Protein science : a publication of the Protein Society,
M Machius, and L Vértesy, and R Huber, and G Wiegand
September 1988, Biochimie,
Copied contents to your clipboard!