Inhibition of phagocyte-endothelium interactions by oxidized fatty acids: a natural anti-inflammatory mechanism? 1996

S Sethi, and A Y Eastman, and J W Eaton
Division of Experimental Pathology, Albany Medical College, NY, USA.

Diets rich in marine fish oil may protect against cardiovascular disease. Although the mechanisms involved in such protection are not known, fish oils have been reported to exert anti-inflammatory actions. For example, dietary fish oil supplementation was observed to profoundly decrease the numbers of monocytic cells adherent to endothelium overlying atherosclerotic lesions in pigs. We have therefore investigated the possibility that fish oil components-particularly n-3 polyunsaturated fatty acids (PUFAs)-might inhibit phagocyte-endothelium interactions. We have found that binding of a monocytic cell line (U937) to cultured endothelium (with cell adhesion molecules up-regulated by exposure to lipopolysaccharide (LPS), interleukin-1 alpha, tumor necrosis factor-alpha, or phorbol myristate acetate (PMA) is greatly decreased by pre-exposure of endothelial cells to n-3 and other PUFAs that are incidentally or purposefully oxidized; unoxidized PUFAs are completely ineffective. Decreased monocyte adherence probably derives from diminished up-regulation of endothelial cell adherence molecules VCAM-1 and ELAM-1. Oxidized n-3 PUFAs prevent LPS- or PMA-induced activation of transcription factor NF-kappa B and the consequent induction of mRNA for both cell adhesion molecules. Hydroperoxy fatty acids are the active principle in oxidized PUFAs because the activity (1) is predominantly organic soluble, (2) is obliterated by pretreatment of oxidized material with chemical reducing agents, and (3) is diminished by enzymatic reduction of organic hydroperoxides with glutathione/glutathione peroxidase. We speculate that this suppression of phagocyte-endothelium interactions by oxidized PUFAs may help explain the anti-inflammatory and possible anti-atherogenic effects of diets rich in fish oil. Perhaps more importantly, this modulation of endothelial cell adhesion molecule expression by oxidized lipids may represent a natural mechanism whereby inflammation-mediated oxidation of endothelial PUFAs may retard ingress of phagocytes and thereby prevent unrestrained phlogistic responses.

UI MeSH Term Description Entries
D007249 Inflammation A pathological process characterized by injury or destruction of tissues caused by a variety of cytologic and chemical reactions. It is usually manifested by typical signs of pain, heat, redness, swelling, and loss of function. Innate Inflammatory Response,Inflammations,Inflammatory Response, Innate,Innate Inflammatory Responses
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010586 Phagocytes Cells that can carry out the process of PHAGOCYTOSIS. Phagocyte,Phagocytic Cell,Phagocytic Cells,Cell, Phagocytic,Cells, Phagocytic
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

S Sethi, and A Y Eastman, and J W Eaton
May 1991, Lancet (London, England),
S Sethi, and A Y Eastman, and J W Eaton
April 1991, Lancet (London, England),
S Sethi, and A Y Eastman, and J W Eaton
October 2011, Clinical nutrition (Edinburgh, Scotland),
S Sethi, and A Y Eastman, and J W Eaton
December 1997, Hypertension (Dallas, Tex. : 1979),
S Sethi, and A Y Eastman, and J W Eaton
January 2022, Molecular and cellular biochemistry,
S Sethi, and A Y Eastman, and J W Eaton
September 2000, Atherosclerosis,
S Sethi, and A Y Eastman, and J W Eaton
May 1991, Biochemical pharmacology,
S Sethi, and A Y Eastman, and J W Eaton
January 2021, Frontiers in endocrinology,
Copied contents to your clipboard!