A parametric study of the concentric-ring transducer design for MRI guided ultrasound surgery. 1996

T Fjield, and X Fan, and K Hynynen
Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.

Noninvasive surgery using high-powered, focused ultrasound transducers in conjunction with magnetic resonance imaging has been shown to be feasible in previous studies. For clinical treatments, the geometry of standard MRI equipment limits the space available for ultrasound surgical equipment. This space requirement can be reduced in one dimension by using phased arrays to control the focal depth, thus eliminating the space required for the motion of a fixed focus transducer. Because of its symmetry, an annular array is ideal for changing the focal depth. Previous works have simulated, built, and characterized various concentric-ring transducers; however, no study has thoroughly examined the potential and limitations of the concentric-ring design for MRI guided ultrasound surgery. The present work is a systematic examination of the capabilities of the concentric-ring array, using numerical simulations to predict the power field, temperature distribution, and accumulated thermal dose. The results presented here illustrate the effects of ring size, center-to-center spacing configurations, number of rings, and radius of curvature on transducer performance. A 10-cm radius of curvature transducer with 14 evenly spaced rings has been built and characterized in order to verify the accuracy of the numerical simulations. The pressure-squared fields produced by this transducer are in excellent agreement with the simulated fields.

UI MeSH Term Description Entries
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D004867 Equipment Design Methods and patterns of fabricating machines and related hardware. Design, Equipment,Device Design,Medical Device Design,Design, Medical Device,Designs, Medical Device,Device Design, Medical,Device Designs, Medical,Medical Device Designs,Design, Device,Designs, Device,Designs, Equipment,Device Designs,Equipment Designs
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013502 General Surgery A specialty in which manual or operative procedures are used in the treatment of disease, injuries, or deformities. Surgery,Surgery, General
D014159 Transducers Any device or element which converts an input signal into an output signal of a different form. Examples include the microphone, phonographic pickup, loudspeaker, barometer, photoelectric cell, automobile horn, doorbell, and underwater sound transducer. (McGraw Hill Dictionary of Scientific and Technical Terms, 4th ed) Transducer
D014463 Ultrasonography The visualization of deep structures of the body by recording the reflections or echoes of ultrasonic pulses directed into the tissues. Use of ultrasound for imaging or diagnostic purposes employs frequencies ranging from 1.6 to 10 megahertz. Echography,Echotomography,Echotomography, Computer,Sonography, Medical,Tomography, Ultrasonic,Ultrasonic Diagnosis,Ultrasonic Imaging,Ultrasonographic Imaging,Computer Echotomography,Diagnosis, Ultrasonic,Diagnostic Ultrasound,Ultrasonic Tomography,Ultrasound Imaging,Diagnoses, Ultrasonic,Diagnostic Ultrasounds,Imaging, Ultrasonic,Imaging, Ultrasonographic,Imaging, Ultrasound,Imagings, Ultrasonographic,Imagings, Ultrasound,Medical Sonography,Ultrasonic Diagnoses,Ultrasonographic Imagings,Ultrasound, Diagnostic,Ultrasounds, Diagnostic

Related Publications

T Fjield, and X Fan, and K Hynynen
September 2022, Micromachines,
T Fjield, and X Fan, and K Hynynen
January 2009, Annual review of medicine,
T Fjield, and X Fan, and K Hynynen
January 1993, Medical physics,
T Fjield, and X Fan, and K Hynynen
October 2006, IEEE transactions on ultrasonics, ferroelectrics, and frequency control,
T Fjield, and X Fan, and K Hynynen
November 2022, Journal of medical imaging (Bellingham, Wash.),
T Fjield, and X Fan, and K Hynynen
December 2022, Medical physics,
T Fjield, and X Fan, and K Hynynen
June 2013, Journal of anesthesia,
T Fjield, and X Fan, and K Hynynen
January 2024, IEEE transactions on bio-medical engineering,
T Fjield, and X Fan, and K Hynynen
April 2017, Proceedings of the International Society for Magnetic Resonance in Medicine ... Scientific Meeting and Exhibition. International Society for Magnetic Resonance in Medicine. Scientific Meeting and Exhibition,
T Fjield, and X Fan, and K Hynynen
September 2005, Academic radiology,
Copied contents to your clipboard!