Muscle reflex stimulates sympathetic postganglionic efferents innervating triceps surae muscles of cats. 1996

J M Hill, and C M Adreani, and M P Kaufman
Department of Internal Medicine, University of California, Davis 95616, USA.

Two neural mechanisms contribute to the cardiovascular responses to exercise. The first, central command, proposes a parallel activation of central locomotor and brain stem circuits controlling cardiovascular function. The second, the muscle reflex, proposes that contraction-activated group III and IV afferents increase cardiovascular function. In humans, whole nerve recordings of sympathetic discharge suggest that central command increases sympathetic outflow to skin but not to skeletal muscle and that the muscle reflex increases sympathetic outflow to skeletal muscle but not to skin. We therefore tested the hypothesis that the muscle reflex, but not central command, increases the discharge of single sympathetic postganglionic efferents innervating the triceps surae muscles of decerebrate unanesthetized cats. Central command was evoked by electrical stimulation of the mesencephalic locomotor region. The reflex was evoked by electrical stimulation of the tibial nerve, which in turn contracted the triceps surae muscles. Hexamethonium abolished spontaneous and evoked activity, verifying that the recordings were from sympathetic postganglionic fibers. The discharge of 13 efferents was increased by static contraction (from 0.6 +/- 0.2 to 1.0 +/- 0.3 imp/s; P < 0.05) but was not increased by central command (from 0.6 +/- 0.2 to 0.8 +/- 0.2 imp/s; P > 0.05). Nevertheless, the discharge of nine efferents, not increased by central command before alpha-adrenergic blockade (from 0.5 +/- 0.2 to 0.9 +/- 0.4 imp/s; P > 0.05), was increased after blockade (from 1.3 +/- 0.2 to 3.2 +/- 0.8 imp/s; P < 0.05). We conclude that the muscle reflex stimulates sympathetic postganglionic efferents innervating the vasculature of skeletal muscle. Furthermore, baroreceptors appear to buffer the central command-induced increases in the discharge of these efferents.

UI MeSH Term Description Entries
D008636 Mesencephalon The middle of the three primitive cerebral vesicles of the embryonic brain. Without further subdivision, midbrain develops into a short, constricted portion connecting the PONS and the DIENCEPHALON. Midbrain contains two major parts, the dorsal TECTUM MESENCEPHALI and the ventral TEGMENTUM MESENCEPHALI, housing components of auditory, visual, and other sensorimoter systems. Midbrain,Mesencephalons,Midbrains
D009043 Motor Activity Body movements of a human or an animal as a behavioral phenomenon. Activities, Motor,Activity, Motor,Motor Activities
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009476 Neurons, Efferent Neurons which send impulses peripherally to activate muscles or secretory cells. Efferent Neurons,Efferent Neuron,Neuron, Efferent
D012018 Reflex An involuntary movement or exercise of function in a part, excited in response to a stimulus applied to the periphery and transmitted to the brain or spinal cord.
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D003655 Decerebrate State A condition characterized by abnormal posturing of the limbs that is associated with injury to the brainstem. This may occur as a clinical manifestation or induced experimentally in animals. The extensor reflexes are exaggerated leading to rigid extension of the limbs accompanied by hyperreflexia and opisthotonus. This condition is usually caused by lesions which occur in the region of the brainstem that lies between the red nuclei and the vestibular nuclei. In contrast, decorticate rigidity is characterized by flexion of the elbows and wrists with extension of the legs and feet. The causative lesion for this condition is located above the red nuclei and usually consists of diffuse cerebral damage. (From Adams et al., Principles of Neurology, 6th ed, p358) Decerebrate Posturing,Decorticate Rigidity,Decorticate State,Rigidity, Decerebrate,Rigidity, Decorticate,Decerebrate Posturings,Decerebrate Rigidity,Decerebrate States,Decorticate Rigidities,Decorticate States,Posturing, Decerebrate,Posturings, Decerebrate,Rigidities, Decorticate,State, Decerebrate,States, Decerebrate
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D006614 Hindlimb Either of two extremities of four-footed non-primate land animals. It usually consists of a FEMUR; TIBIA; and FIBULA; tarsals; METATARSALS; and TOES. (From Storer et al., General Zoology, 6th ed, p73) Hindlimbs

Related Publications

J M Hill, and C M Adreani, and M P Kaufman
May 1998, The American journal of physiology,
J M Hill, and C M Adreani, and M P Kaufman
December 2002, The Journal of physiology,
J M Hill, and C M Adreani, and M P Kaufman
June 1993, Neuroscience letters,
J M Hill, and C M Adreani, and M P Kaufman
February 1987, Journal of neurophysiology,
J M Hill, and C M Adreani, and M P Kaufman
September 2005, Journal of applied physiology (Bethesda, Md. : 1985),
J M Hill, and C M Adreani, and M P Kaufman
October 1991, Archives of physical medicine and rehabilitation,
J M Hill, and C M Adreani, and M P Kaufman
January 2008, Journal of athletic training,
J M Hill, and C M Adreani, and M P Kaufman
April 1982, Pflugers Archiv : European journal of physiology,
J M Hill, and C M Adreani, and M P Kaufman
September 1967, The American journal of physiology,
J M Hill, and C M Adreani, and M P Kaufman
January 1976, Fiziologicheskii zhurnal SSSR imeni I. M. Sechenova,
Copied contents to your clipboard!