Phosphatidylethanol stimulates the plasma-membrane calcium pump from human erythrocytes. 1996

M Suju, and M Davila, and G Poleo, and R Docampo, and G Benaim
Instituto de Biologia Experimental, Facultad de Ciencias, Universidad Central de Venezuela, Caracas, Venezuela.

Phosphatidylethanol is formed by "transphosphatidylation' of phospholipids with ethanol catalysed by phospholipase D and can be accumulated in the plasma membrane of mammalian cells after treatment of animals with ethanol. In the present work we show that phosphatidylalcohols, such as phosphatidylethanol and phosphatidylbutanol, produced a twofold stimulation of the Ca(2+)-ATPase activity of human erythrocytes. This stimulation occurs with the purified, solubilized enzyme as well as with ghost preparations, where the enzyme is in its natural lipidic environment and is different to that obtained with other acidic phospholipids such as phosphatidylserine. Addition of either phosphatidylserine, phosphatidylethanol or phosphatidylbutanol to the purified Ca(2+)-ATPase, or to ghosts preparations, increased the affinity of the enzyme for Ca2+ and the maximal velocity of the reaction as compared with controls in the absence of acidic phospholipids. However, in contrast with what occurs with phosphatidylserine, simultaneous addition of phosphatidyl-alcohols and calmodulin increased the affinity of the enzyme for Ca2+ to a greater extent than each added separately. When ethanol was added to either the purified erythrocyte Ca(2+)-ATPase or to erythrocyte-ghost preparations in the presence of acidic phospholipids, an additive effect was observed. There was an increase in the affinity for Ca2+ and in the maximal velocity of the reaction, well above the values obtained with ethanol or with the acidic phospholipids tested separately. These findings could have pharmacological importance. It is conceivable that the decrease in the intracellular Ca(2+) concentration that has been reported in erythrocytes as a result of ethanol intoxication could be due to the stimulation of the Ca(2+)-ATPase by the accumulated phosphatidylethanol, to a direct effect of ethanol on the enzyme or to an additive combination of both.

UI MeSH Term Description Entries
D010712 Phosphatidic Acids Fatty acid derivatives of glycerophosphates. They are composed of glycerol bound in ester linkage with 1 mole of phosphoric acid at the terminal 3-hydroxyl group and with 2 moles of fatty acids at the other two hydroxyl groups. Ammonium Phosphatidate,Diacylglycerophosphates,Phosphatidic Acid,Acid, Phosphatidic,Acids, Phosphatidic,Phosphatidate, Ammonium
D002147 Calmodulin A heat-stable, low-molecular-weight activator protein found mainly in the brain and heart. The binding of calcium ions to this protein allows this protein to bind to cyclic nucleotide phosphodiesterases and to adenyl cyclase with subsequent activation. Thereby this protein modulates cyclic AMP and cyclic GMP levels. Calcium-Dependent Activator Protein,Calcium-Dependent Regulator,Bovine Activator Protein,Cyclic AMP-Phosphodiesterase Activator,Phosphodiesterase Activating Factor,Phosphodiesterase Activator Protein,Phosphodiesterase Protein Activator,Regulator, Calcium-Dependent,AMP-Phosphodiesterase Activator, Cyclic,Activating Factor, Phosphodiesterase,Activator Protein, Bovine,Activator Protein, Calcium-Dependent,Activator Protein, Phosphodiesterase,Activator, Cyclic AMP-Phosphodiesterase,Activator, Phosphodiesterase Protein,Calcium Dependent Activator Protein,Calcium Dependent Regulator,Cyclic AMP Phosphodiesterase Activator,Factor, Phosphodiesterase Activating,Protein Activator, Phosphodiesterase,Protein, Bovine Activator,Protein, Calcium-Dependent Activator,Protein, Phosphodiesterase Activator,Regulator, Calcium Dependent
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D004910 Erythrocyte Membrane The semi-permeable outer structure of a red blood cell. It is known as a red cell 'ghost' after HEMOLYSIS. Erythrocyte Ghost,Red Cell Cytoskeleton,Red Cell Ghost,Erythrocyte Cytoskeleton,Cytoskeleton, Erythrocyte,Cytoskeleton, Red Cell,Erythrocyte Cytoskeletons,Erythrocyte Ghosts,Erythrocyte Membranes,Ghost, Erythrocyte,Ghost, Red Cell,Membrane, Erythrocyte,Red Cell Cytoskeletons,Red Cell Ghosts
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000252 Calcium-Transporting ATPases Cation-transporting proteins that utilize the energy of ATP hydrolysis for the transport of CALCIUM. They differ from CALCIUM CHANNELS which allow calcium to pass through a membrane without the use of energy. ATPase, Calcium,Adenosinetriphosphatase, Calcium,Ca(2+)-Transporting ATPase,Calcium ATPase,Calcium Adenosinetriphosphatase,Adenosine Triphosphatase, Calcium,Ca2+ ATPase,Calcium-ATPase,ATPase, Ca2+,ATPases, Calcium-Transporting,Calcium Adenosine Triphosphatase,Calcium Transporting ATPases,Triphosphatase, Calcium Adenosine
D000431 Ethanol A clear, colorless liquid rapidly absorbed from the gastrointestinal tract and distributed throughout the body. It has bactericidal activity and is used often as a topical disinfectant. It is widely used as a solvent and preservative in pharmaceutical preparations as well as serving as the primary ingredient in ALCOHOLIC BEVERAGES. Alcohol, Ethyl,Absolute Alcohol,Grain Alcohol,Alcohol, Absolute,Alcohol, Grain,Ethyl Alcohol
D020404 Glycerophospholipids Derivatives of phosphatidic acid in which the hydrophobic regions are composed of two fatty acids and a polar alcohol is joined to the C-3 position of glycerol through a phosphodiester bond. They are named according to their polar head groups, such as phosphatidylcholine and phosphatidylethanolamine. Glycerophospholipid,Phosphoglyceride,Phosphoglycerides

Related Publications

M Suju, and M Davila, and G Poleo, and R Docampo, and G Benaim
October 1994, Biochimica et biophysica acta,
M Suju, and M Davila, and G Poleo, and R Docampo, and G Benaim
September 2009, Archives of biochemistry and biophysics,
M Suju, and M Davila, and G Poleo, and R Docampo, and G Benaim
April 1993, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research,
M Suju, and M Davila, and G Poleo, and R Docampo, and G Benaim
January 1991, Physiological reviews,
M Suju, and M Davila, and G Poleo, and R Docampo, and G Benaim
November 1993, The American journal of physiology,
M Suju, and M Davila, and G Poleo, and R Docampo, and G Benaim
February 1995, The Biochemical journal,
M Suju, and M Davila, and G Poleo, and R Docampo, and G Benaim
January 1980, Annals of the New York Academy of Sciences,
M Suju, and M Davila, and G Poleo, and R Docampo, and G Benaim
October 1994, The Biochemical journal,
M Suju, and M Davila, and G Poleo, and R Docampo, and G Benaim
August 1990, Biochimica et biophysica acta,
M Suju, and M Davila, and G Poleo, and R Docampo, and G Benaim
February 1992, Trends in cell biology,
Copied contents to your clipboard!