Analysis of effector mechanisms in murine cardiac allograft rejection. 1996

D Z Alexander, and T C Pearson, and R Hendrix, and S C Ritchie, and C P Larsen
Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA.

Multiple effector cells have been implicated in transplant rejection, including cytotoxic T cells, B cells, macrophages and NK cells. The purpose of this study was to examine the effector pathways which are critical to murine cardiac allograft rejection. RT-PCR (reverse transcriptase-polymerase chain reaction) analysis of syngeneic and allogeneic vascularized heterotopic cardiac grafts at 5, 8 and 12 days following transplantation demonstrate constitutive expression of Fas in both the syngeneic and allogeneic grafts as well as in normal heart. However, FasL, granzyme, and perforin expression were shown to be up-regulated on days 5-12 in the allograft with no expression in syngeneic grafts or in normal hearts. We have recently analyzed the functional significance of T cell cytotoxic pathways and found that neither the Fas nor CD8+ cytotoxic pathways are required for murine cardiac allograft rejection. In light of these results, we investigated the functional significance of other effector cells in the rejection process. B cell deficient C57BL/10-IgHtm1Cgn mice rejected cardiac allografts from normal donors at control rate. Finally, RT-PCR was used to analyze the expression of macrophage effector transcripts in allograft rejection. Transcripts for iNOS (inducible nitric oxide synthase) and TNF alpha (tumor necrosis factor-alpha) were up-regulated on days 5-12 in untreated allografts with undetectable expression in normal heart or syngeneic grafts. These results demonstrate that effective allograft rejection can occur in the absence of B cells and T cell cytotoxicity pathways suggesting that other effector pathways, such as delayed-type hypersensitivity responses by macrophages, may be critical for allograft rejection.

UI MeSH Term Description Entries
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008297 Male Males
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D008809 Mice, Inbred C3H An inbred strain of mouse that is used as a general purpose strain in a wide variety of RESEARCH areas including CANCER; INFECTIOUS DISEASES; sensorineural, and cardiovascular biology research. Mice, C3H,Mouse, C3H,Mouse, Inbred C3H,C3H Mice,C3H Mice, Inbred,C3H Mouse,C3H Mouse, Inbred,Inbred C3H Mice,Inbred C3H Mouse
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D003602 Cytotoxicity, Immunologic The phenomenon of target cell destruction by immunologically active effector cells. It may be brought about directly by sensitized T-lymphocytes or by lymphoid or myeloid "killer" cells, or it may be mediated by cytotoxic antibody, cytotoxic factor released by lymphoid cells, or complement. Tumoricidal Activity, Immunologic,Immunologic Cytotoxicity,Immunologic Tumoricidal Activities,Immunologic Tumoricidal Activity,Tumoricidal Activities, Immunologic
D006084 Graft Rejection An immune response with both cellular and humoral components, directed against an allogeneic transplant, whose tissue antigens are not compatible with those of the recipient. Transplant Rejection,Rejection, Transplant,Transplantation Rejection,Graft Rejections,Rejection, Graft,Rejection, Transplantation,Rejections, Graft,Rejections, Transplant,Rejections, Transplantation,Transplant Rejections,Transplantation Rejections
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001402 B-Lymphocytes Lymphoid cells concerned with humoral immunity. They are short-lived cells resembling bursa-derived lymphocytes of birds in their production of immunoglobulin upon appropriate stimulation. B-Cells, Lymphocyte,B-Lymphocyte,Bursa-Dependent Lymphocytes,B Cells, Lymphocyte,B Lymphocyte,B Lymphocytes,B-Cell, Lymphocyte,Bursa Dependent Lymphocytes,Bursa-Dependent Lymphocyte,Lymphocyte B-Cell,Lymphocyte B-Cells,Lymphocyte, Bursa-Dependent,Lymphocytes, Bursa-Dependent

Related Publications

D Z Alexander, and T C Pearson, and R Hendrix, and S C Ritchie, and C P Larsen
February 1987, Transplantation proceedings,
D Z Alexander, and T C Pearson, and R Hendrix, and S C Ritchie, and C P Larsen
January 1986, Annual review of immunology,
D Z Alexander, and T C Pearson, and R Hendrix, and S C Ritchie, and C P Larsen
January 1995, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association,
D Z Alexander, and T C Pearson, and R Hendrix, and S C Ritchie, and C P Larsen
February 1989, Transplantation proceedings,
D Z Alexander, and T C Pearson, and R Hendrix, and S C Ritchie, and C P Larsen
January 2013, Texas Heart Institute journal,
D Z Alexander, and T C Pearson, and R Hendrix, and S C Ritchie, and C P Larsen
March 2000, Seminars in nephrology,
D Z Alexander, and T C Pearson, and R Hendrix, and S C Ritchie, and C P Larsen
October 2009, Transplantation,
D Z Alexander, and T C Pearson, and R Hendrix, and S C Ritchie, and C P Larsen
October 1976, Cellular immunology,
D Z Alexander, and T C Pearson, and R Hendrix, and S C Ritchie, and C P Larsen
February 2017, The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation,
D Z Alexander, and T C Pearson, and R Hendrix, and S C Ritchie, and C P Larsen
February 1987, Transplantation proceedings,
Copied contents to your clipboard!