Physiological and biochemical analyses of FlgH, a lipoprotein forming the outer membrane L ring of the flagellar basal body of Salmonella typhimurium. 1996

G J Schoenhals, and R M Macnab
Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA.

The FlgH protein of Salmonella typhimurium, from which the outer membrane L ring of the flagellar basal body is constructed, has a consensus motif (LTG C) for lipoylation and signal peptide cleavage. We have confirmed the previous finding (M. Homma, K. Ohnishi, T. Iino, and R. M. Macnab, J. Bacteriol. 169:3617-3624, 1987) that it is synthesized in precursor form and processed to a mature form with an apparent molecular mass of ca. 25 kDa. flgH alleles with an in-frame deletion or a 3' truncation still permitted processing. The deletion permitted partial restoration of motility in complementation tests, whereas the truncation did not. Globomycin, an antibiotic which inhibits signal peptide cleavage of prolipoproteins, caused accumulation of precursor forms of FlgH. When cells transformed with a plasmid containing the flgH gene were grown in the presence of [3H]palmitate, a 25-kDa protein doublet was found to be radiolabeled; its identity as FlgH was confirmed by shifts in mobility when the internally deleted and truncated alleles of the gene were used. Hook-basal body complexes from cells grown in the presence of [3H]palmitate demonstrated that FlgH incorporated into flagellar structure was also labeled. An in-frame fusion between the leader sequence of the periplasmic protein PeIB and the mature FlgH sequence, with the putative N-terminal cysteine replaced by glycine, resulted in production of a fusion protein that was processed to its mature form. With a low-copy-number plasmid, the ability of this pelB-flgH fusion to complement a flgH mutant was poor, but with a high-copy-number plasmid, it was comparable to that of the wild type. Although lacking the N-terminal cysteine and therefore being incapable of lipoylation via a thioether linkage, the mutant protein still incorporated [3H]palmitate at low levels, perhaps through acylation of the N-terminal alpha-amino group. We conclude that FlgH is a lipoprotein and that under normal physiological conditions the lipoyl modification is necessary for FlgH to function properly as the L-ring protein of the flagellar basal body. We suggest that the N terminus of FlgH is responsible for anchoring the basal body in the outer membrane and that the C terminus may be responsible for binding to the P ring to form the L,P-ring complex.

UI MeSH Term Description Entries
D007553 Isotope Labeling Techniques for labeling a substance with a stable or radioactive isotope. It is not used for articles involving labeled substances unless the methods of labeling are substantively discussed. Tracers that may be labeled include chemical substances, cells, or microorganisms. Isotope Labeling, Stable,Isotope-Coded Affinity Tagging,Isotopically-Coded Affinity Tagging,Affinity Tagging, Isotope-Coded,Affinity Tagging, Isotopically-Coded,Isotope Coded Affinity Tagging,Labeling, Isotope,Labeling, Stable Isotope,Stable Isotope Labeling,Tagging, Isotope-Coded Affinity,Tagging, Isotopically-Coded Affinity
D008074 Lipoproteins Lipid-protein complexes involved in the transportation and metabolism of lipids in the body. They are spherical particles consisting of a hydrophobic core of TRIGLYCERIDES and CHOLESTEROL ESTERS surrounded by a layer of hydrophilic free CHOLESTEROL; PHOSPHOLIPIDS; and APOLIPOPROTEINS. Lipoproteins are classified by their varying buoyant density and sizes. Circulating Lipoproteins,Lipoprotein,Lipoproteins, Circulating
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010168 Palmitates Salts and esters of the 16-carbon saturated monocarboxylic acid--palmitic acid. Hexadecanoates,Palmitate
D010450 Endopeptidases A subclass of PEPTIDE HYDROLASES that catalyze the internal cleavage of PEPTIDES or PROTEINS. Endopeptidase,Peptide Peptidohydrolases
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011480 Protease Inhibitors Compounds which inhibit or antagonize biosynthesis or actions of proteases (ENDOPEPTIDASES). Antiprotease,Endopeptidase Inhibitor,Endopeptidase Inhibitors,Peptidase Inhibitor,Peptidase Inhibitors,Peptide Hydrolase Inhibitor,Peptide Hydrolase Inhibitors,Peptide Peptidohydrolase Inhibitor,Peptide Peptidohydrolase Inhibitors,Protease Antagonist,Protease Antagonists,Antiproteases,Protease Inhibitor,Antagonist, Protease,Antagonists, Protease,Hydrolase Inhibitor, Peptide,Hydrolase Inhibitors, Peptide,Inhibitor, Endopeptidase,Inhibitor, Peptidase,Inhibitor, Peptide Hydrolase,Inhibitor, Peptide Peptidohydrolase,Inhibitor, Protease,Inhibitors, Endopeptidase,Inhibitors, Peptidase,Inhibitors, Peptide Hydrolase,Inhibitors, Peptide Peptidohydrolase,Inhibitors, Protease,Peptidohydrolase Inhibitor, Peptide,Peptidohydrolase Inhibitors, Peptide
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA

Related Publications

G J Schoenhals, and R M Macnab
January 1992, Journal of molecular biology,
G J Schoenhals, and R M Macnab
February 1989, Journal of molecular biology,
G J Schoenhals, and R M Macnab
August 1996, Journal of molecular biology,
G J Schoenhals, and R M Macnab
February 1994, Journal of molecular biology,
G J Schoenhals, and R M Macnab
March 1990, Journal of molecular biology,
G J Schoenhals, and R M Macnab
July 1992, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!