Identification of human cytochrome P450 isoforms involved in the stereoselective metabolism of mianserin enantiomers. 1996

E Koyama, and K Chiba, and M Tani, and T Ishizaki
Department of Clinical Pharmacology, International Medical Center of Japan, Tokyo, Japan.

To identify cytochrome P450 (CYP) isoform(s) involved in the major metabolic pathways of mianserin (MS) enantiomers in humans, we examined the metabolites formed from S-(+)- and R-(-)-MS using human liver microsomes and eight recombinant human CYP isoforms (i.e., CYP1A2, 2A6, 2B6, 2C9, 2C19, 2D6, 2E1 and 3A4). The mean V(max)/K(m) values of the 8-hydroxylation and N-oxidation were greater for S-(+)- than for R-(-)-MS, whereas that of the N-demethylation gave the opposite observation. When relationships were evaluated in microsomes from 10 human livers between the metabolism of substrates toward the respective CYP isoforms and stereoselective metabolism of MS at a low (5 microM) and at a high (200 microM) MS concentration, significant correlations existed in: 2-hydroxylation of desipramine vs. 8-hydroxylation of S-(+)-MS (r = 0.94, P < .01), O-deethylation of phenacetin vs. N-demethylation of S-(+)-MS (r = 0.85, P < .01) and R-(-)-MS (r = 0.69, P < .05) or N-oxidation of S-(+)-MS (r = 0.94, P < .01) at the low concentration; and 6 beta-hydroxylation of testosterone vs. three metabolic reactions of both MS enantiomers at the high concentration (r = 0.68-0.93, P < .05-.01). Quinidine inhibited the 8-hydroxylation of both enantiomers by < 40% of the respective control values. Furafylline and alpha-naphthoflavone showed a potent inhibitory effect on the N-demethylation and N-oxidation of S-(+)-MS (by up to < 50% of the respective control activities). In addition, troleandomycin inhibited the N-demethylation and N-oxidation of R-(-)-MS by < 50% of the respective control activities. Among the recombinant human CYP isoforms, CYP2D6, 2B6, 3A4 and 1A2 catalyzed the 8-hydroxylation, and CYP1A2 and 3A4 were involved exclusively in the N-oxidation, whereas CYP2B6, 2C19, 1A2, 3A4 and 2D6 showed a catalytic activity for the N-demethylation, for either or both of MS enantiomers. Taken together, the 8-hydroxylation for both MS enantiomers is mediated mainly via CYP2D6, whereas the N-demethylation for both the enantiomers and N-oxidation for S-(+)-MS are catalyzed mainly via CYP1A2. The two in vitro experiments suggested that CYP3A is involved to a certain extent in each of the stereoselective MS metabolic pathways.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008803 Mianserin A tetracyclic compound with antidepressant effects. It may cause drowsiness and hematological problems. Its mechanism of therapeutic action is not well understood, although it apparently blocks alpha-adrenergic, histamine H1, and some types of serotonin receptors. Lerivon,Mianserin Hydrochloride,Mianserin Monohydrochloride,Org GB 94,Tolvon,Hydrochloride, Mianserin,Monohydrochloride, Mianserin
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006900 Hydroxylation Placing of a hydroxyl group on a compound in a position where one did not exist before. (Stedman, 26th ed) Hydroxylations

Related Publications

E Koyama, and K Chiba, and M Tani, and T Ishizaki
September 1997, Xenobiotica; the fate of foreign compounds in biological systems,
E Koyama, and K Chiba, and M Tani, and T Ishizaki
May 1999, British journal of clinical pharmacology,
E Koyama, and K Chiba, and M Tani, and T Ishizaki
November 2014, The Journal of pharmacy and pharmacology,
E Koyama, and K Chiba, and M Tani, and T Ishizaki
November 2011, Chirality,
E Koyama, and K Chiba, and M Tani, and T Ishizaki
October 2004, European journal of clinical pharmacology,
E Koyama, and K Chiba, and M Tani, and T Ishizaki
July 1996, Drug metabolism and disposition: the biological fate of chemicals,
E Koyama, and K Chiba, and M Tani, and T Ishizaki
May 2003, Chirality,
E Koyama, and K Chiba, and M Tani, and T Ishizaki
July 2006, Drug metabolism and disposition: the biological fate of chemicals,
E Koyama, and K Chiba, and M Tani, and T Ishizaki
March 2001, European journal of clinical pharmacology,
Copied contents to your clipboard!