Localized DNA flexibility contributes to target site selection by DNA-bending proteins. 1996

A Grove, and A Galeone, and L Mayol, and E P Geiduschek
Department of Biology, University of California, San Diego 92093-0634, USA.

Certain DNA-binding proteins function as architectural elements by bending DNA. We have studied the binding of three such proteins, the prokaryotic HU and integration host factor (IHF) and the eukaryotic HMG1, to DNA in which flexibility is enhanced by tandem mismatches and by substituting 5-hydroxymethyluracil (hmU) for thymine (T). IHF and HU have higher affinity for DNA with two 4-nt loops than for perfect duplex DNA with a sequence that corresponds to a binding site for the phage-encoded homolog, TF1. HU has a high affinity for DNA with 4-nt loops separated by 9 bp (Kd = 3.5 nM), with suboptimal binding for other loop separations. IHF-binding is optimal when 4-nt loops are 8 to 9 bp apart; optimal complex formation with DNA representing the specific IHF-binding site H' requires that loops do not disrupt the consensus sequence and that one 4-nt loop borders the dyad axis-proximal block of consensus sequence (Kd = 0.3 nM, approximately tenfold lower than for H' perfect duplex DNA). HMG1 also binds preferentially to DNA with loops. All three proteins bind more tightly to DNA in which thymine is replaced with hmU. IHF has a tenfold higher affinity for hmU-DNA without a consensus IHF site (Kd = 7.6 nM) than for the corresponding T-DNA but does exhibit site-selectivity in hmU-DNA; Kd = 0.6 nM for the hmU-containing version of H'. Tighter binding to hmU-DNA is consistent with greater flexibility, and the distinct influence of loop position on complex formation suggests that sequence-dependent variations in flexibility of duplex DNA play a significant role in target-site selection by these DNA-bending proteins.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D006609 High Mobility Group Proteins A family of low-molecular weight, non-histone proteins found in chromatin. HMG Proteins,Calf Thymus Chromatin Protein HMG,High Mobility Group Chromosomal Proteins
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial

Related Publications

A Grove, and A Galeone, and L Mayol, and E P Geiduschek
July 2003, Journal of molecular biology,
A Grove, and A Galeone, and L Mayol, and E P Geiduschek
November 2005, Proceedings of the National Academy of Sciences of the United States of America,
A Grove, and A Galeone, and L Mayol, and E P Geiduschek
May 1992, Cell,
A Grove, and A Galeone, and L Mayol, and E P Geiduschek
July 1986, Biochemistry,
A Grove, and A Galeone, and L Mayol, and E P Geiduschek
January 1992, Methods in enzymology,
A Grove, and A Galeone, and L Mayol, and E P Geiduschek
October 2001, Chemistry & biology,
A Grove, and A Galeone, and L Mayol, and E P Geiduschek
March 1994, Nature,
A Grove, and A Galeone, and L Mayol, and E P Geiduschek
June 2010, Biophysical journal,
A Grove, and A Galeone, and L Mayol, and E P Geiduschek
October 1994, Molecular microbiology,
A Grove, and A Galeone, and L Mayol, and E P Geiduschek
April 2015, The Journal of chemical physics,
Copied contents to your clipboard!