SpoIIAA governs the release of the cell-type specific transcription factor sigma F from its anti-sigma factor SpoIIAB. 1996

L Duncan, and S Alper, and R Losick
Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.

The Bacillus subtilis transcription factor sigma F is a cell-type specific regulatory protein whose activity is governed by SpoIIAB and SpoIIAA and the nucleotides ATP and ADP. SpoIIAB is an anti-sigma factor that binds to sigma F in a manner that is stimulated by ATP, thereby trapping sigma F in an inactive complex. Alternatively, SpoIIAB binds to SpoIIAA in a manner that is stimulated by ADP to form a SpoIIAB.SpoIIAA complex in which SpoIIAB is sequestered from sigma F. SpoIIAB is also a protein kinase that uses ATP to phosphorylate, and thereby inactivate, SpoIIAA. Thus, ATP inhibits sigma F activity both by promoting formation of the SpoIIAB.sigma F complex and by phosphorylation of SpoIIAA. In extension of previous results, we use affinity chromatography to show that SpoIIAB is capable of forming long-lived complexes with sigma F and SpoIIAA and that the formation of these complexes is dependent on ATP and ADP, respectively. Using a DNA template lacking adenosine residues on the non-transcribed strand, we demonstrate that ATP is required for SpoIIAB-mediated inhibition of sigma F-directed RNA synthesis and that this inhibition is prevented by SpoIIAA in a manner that is stimulated by ADP. We show that ADP acts by protecting SpoIIAA from phosphorylation by SpoIIAB and that a mutant protein bearing an amino acid substitution at the site of phosphorylation in SpoIIAA is capable of preventing the inhibition of sigma F in a manner that does not depend on ADP. A principal finding from the investigation is that SpoIIAA restores activity to sigma F that had previously been inhibited by SpoIIAB. This is demonstrated both by the capacity of SpoIIAA to reverse SpoIIAB-mediated inhibition of sigma F-directed RNA synthesis and by its capacity to interact with and disrupt the SpoIIAB. sigma F complex. The results are consistent with a model in which sigma F is controlled by the cellular concentration of unphosphorylated SpoIIAA.

UI MeSH Term Description Entries
D008957 Models, Genetic Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Genetic Models,Genetic Model,Model, Genetic
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002846 Chromatography, Affinity A chromatographic technique that utilizes the ability of biological molecules, often ANTIBODIES, to bind to certain ligands specifically and reversibly. It is used in protein biochemistry. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Bioaffinity,Immunochromatography,Affinity Chromatography,Bioaffinity Chromatography
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000244 Adenosine Diphosphate Adenosine 5'-(trihydrogen diphosphate). An adenine nucleotide containing two phosphate groups esterified to the sugar moiety at the 5'-position. ADP,Adenosine Pyrophosphate,Magnesium ADP,MgADP,Adenosine 5'-Pyrophosphate,5'-Pyrophosphate, Adenosine,ADP, Magnesium,Adenosine 5' Pyrophosphate,Diphosphate, Adenosine,Pyrophosphate, Adenosine

Related Publications

L Duncan, and S Alper, and R Losick
December 1990, Proceedings of the National Academy of Sciences of the United States of America,
L Duncan, and S Alper, and R Losick
March 1993, Proceedings of the National Academy of Sciences of the United States of America,
L Duncan, and S Alper, and R Losick
November 2000, Journal of bacteriology,
Copied contents to your clipboard!