Selective G-protein regulation of neuronal calcium channels. 1996

P T Toth, and L R Shekter, and G H Ma, and L H Philipson, and R J Miller
Department of Pharmacological and Physiological Sciences, The University of Chicago, Illinois 60637, USA.

We examined the properties and regulation of Ca channels resulting from the expression of human alpha1B and alpha1E subunits stably expressed in KEK293 cells. The ancillary subunits beta1B and alpha2/delta were also stably expressed in these cell lines. Ca currents in alpha1B-expressing cells had the properties of N-type currents. Ca currents in cells expressing alpha1E exhibited a novel profile that was similar to the properties of the "R type" Ca current. Introduction of GTP-gamma-S into alpha1B cells greatly enhanced the extent of prepulse facilitation of the Ca current, whereas it had only a very small effect in alpha1E-expressing cells. Activation of somatostatin receptors endogenous to HEK293 cells or kappa opioid receptors, expressed in the cells after transfection, inhibited Ca currents in alpha1B-expressing cells. This inhibition was blocked by pertussis toxin and was partially relieved by a depolarizing prepulse. In contrast, no inhibitory effects were noted in cells expressing alpha1E channels under the same circumstances. HEK293 cells normally contained G-proteins from all of the four major families. Inhibition of Ca currents by kappa agonists in alpha1B-expressing cells was enhanced slightly by the cotransfection of several G-protein alpha subunits. kappa agonists, however, had no effect in alpha1E-containing cells, even after overexpression of different G-protein alpha-subunits. In summary, these results demonstrate that there is a large difference in the susceptibility of alpha1B- and alpha1E-based Ca channels to regulation by G-proteins. This is so despite the fact that the two types of Ca channels show substantial similarities in their primary sequences.

UI MeSH Term Description Entries
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013004 Somatostatin A 14-amino acid peptide named for its ability to inhibit pituitary GROWTH HORMONE release, also called somatotropin release-inhibiting factor. It is expressed in the central and peripheral nervous systems, the gut, and other organs. SRIF can also inhibit the release of THYROID-STIMULATING HORMONE; PROLACTIN; INSULIN; and GLUCAGON besides acting as a neurotransmitter and neuromodulator. In a number of species including humans, there is an additional form of somatostatin, SRIF-28 with a 14-amino acid extension at the N-terminal. Cyclic Somatostatin,Somatostatin-14,Somatotropin Release-Inhibiting Hormone,SRIH-14,Somatofalk,Somatostatin, Cyclic,Somatotropin Release-Inhibiting Factor,Stilamin,Somatostatin 14,Somatotropin Release Inhibiting Factor,Somatotropin Release Inhibiting Hormone
D015220 Calcium Channels Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels
D018408 Patch-Clamp Techniques An electrophysiologic technique for studying cells, cell membranes, and occasionally isolated organelles. All patch-clamp methods rely on a very high-resistance seal between a micropipette and a membrane; the seal is usually attained by gentle suction. The four most common variants include on-cell patch, inside-out patch, outside-out patch, and whole-cell clamp. Patch-clamp methods are commonly used to voltage clamp, that is control the voltage across the membrane and measure current flow, but current-clamp methods, in which the current is controlled and the voltage is measured, are also used. Patch Clamp Technique,Patch-Clamp Technic,Patch-Clamp Technique,Voltage-Clamp Technic,Voltage-Clamp Technique,Voltage-Clamp Techniques,Whole-Cell Recording,Patch-Clamp Technics,Voltage-Clamp Technics,Clamp Technique, Patch,Clamp Techniques, Patch,Patch Clamp Technic,Patch Clamp Technics,Patch Clamp Techniques,Recording, Whole-Cell,Recordings, Whole-Cell,Technic, Patch-Clamp,Technic, Voltage-Clamp,Technics, Patch-Clamp,Technics, Voltage-Clamp,Technique, Patch Clamp,Technique, Patch-Clamp,Technique, Voltage-Clamp,Techniques, Patch Clamp,Techniques, Patch-Clamp,Techniques, Voltage-Clamp,Voltage Clamp Technic,Voltage Clamp Technics,Voltage Clamp Technique,Voltage Clamp Techniques,Whole Cell Recording,Whole-Cell Recordings
D019204 GTP-Binding Proteins Regulatory proteins that act as molecular switches. They control a wide range of biological processes including: receptor signaling, intracellular signal transduction pathways, and protein synthesis. Their activity is regulated by factors that control their ability to bind to and hydrolyze GTP to GDP. EC 3.6.1.-. G-Proteins,GTP-Regulatory Proteins,Guanine Nucleotide Regulatory Proteins,G-Protein,GTP-Binding Protein,GTP-Regulatory Protein,Guanine Nucleotide Coupling Protein,G Protein,G Proteins,GTP Binding Protein,GTP Binding Proteins,GTP Regulatory Protein,GTP Regulatory Proteins,Protein, GTP-Binding,Protein, GTP-Regulatory,Proteins, GTP-Binding,Proteins, GTP-Regulatory

Related Publications

P T Toth, and L R Shekter, and G H Ma, and L H Philipson, and R J Miller
June 2015, Molecular pharmacology,
P T Toth, and L R Shekter, and G H Ma, and L H Philipson, and R J Miller
January 1989, General pharmacology,
P T Toth, and L R Shekter, and G H Ma, and L H Philipson, and R J Miller
February 1996, Proceedings of the National Academy of Sciences of the United States of America,
P T Toth, and L R Shekter, and G H Ma, and L H Philipson, and R J Miller
January 1997, Nature,
P T Toth, and L R Shekter, and G H Ma, and L H Philipson, and R J Miller
January 1988, Advances in second messenger and phosphoprotein research,
P T Toth, and L R Shekter, and G H Ma, and L H Philipson, and R J Miller
August 2022, American journal of physiology. Cell physiology,
P T Toth, and L R Shekter, and G H Ma, and L H Philipson, and R J Miller
January 2009, Trends in pharmacological sciences,
P T Toth, and L R Shekter, and G H Ma, and L H Philipson, and R J Miller
August 1997, Molecular pharmacology,
P T Toth, and L R Shekter, and G H Ma, and L H Philipson, and R J Miller
November 2010, Cellular and molecular neurobiology,
P T Toth, and L R Shekter, and G H Ma, and L H Philipson, and R J Miller
July 2013, Biochimica et biophysica acta,
Copied contents to your clipboard!