Immunosuppressants: cellular and molecular mechanisms of action. 1996

M Suthanthiran, and R E Morris, and T B Strom
Rogosin Institute, Department of Transplantation Medicine and Extracorporeal Therapy, New York Hospital-Cornell Medical Center, New York, USA.

The basic immunosuppressive protocol used in most transplant centers involves the use of multiple drugs, each directed at a discrete site in the T-cell activation cascade and each with distinct side effects. Cyclosporine, azathioprine, corticosteroids, FK506 (tacrolimus), and RS61443 (mycophenolate mofetil) have been approved by the Food and Drug Administration, and the clinical efficacy of rapamycin (sirolimus), mizoribine, 15-deoxyspergualin, and leflunomide is being explored. Based on their primary site of action, the immunosuppressants can be classified as inhibitors of transcription (cyclosporine, tacrolimus), inhibitors of nucleotide synthesis (azathioprine, mycophenolate mofetil, mizoribine, leflunomide), inhibitors of growth factor signal transduction (sirolimus, leflunomide), and inhibitors of differentiation (15-deoxyspergualin). Polyclonal antilymphocyte antibodies, monoclonal antibodies directed at the T-cell antigen receptor complex (OKT3, TIOB9), and monoclonal antibodies directed at additional cell surface antigens, including interleukin-2 receptor alpha, afford cell-specific regulation of the immune response and are being used in the clinical setting as induction therapy and/or antirejection drugs. Clearly, the transplant clinician now has a greater choice in the selection and application of immunosuppressants in the clinic for the fine regulation of the antiallograft repertory. The prevailing paradigm regarding the mechanisms of action of immunosuppressants is that they all function to prevent allograft rejection by preventing/inhibiting cell activation, cytokine production, differentiation, and/or proliferation. One hypothesis, albeit provocative, is that some of the immunosuppressants might function by stimulating the expression of immunosuppressive molecules and/or cells.

UI MeSH Term Description Entries
D007111 Immunity, Cellular Manifestations of the immune response which are mediated by antigen-sensitized T-lymphocytes via lymphokines or direct cytotoxicity. This takes place in the absence of circulating antibody or where antibody plays a subordinate role. Cell-Mediated Immunity,Cellular Immune Response,Cell Mediated Immunity,Cell-Mediated Immunities,Cellular Immune Responses,Cellular Immunities,Cellular Immunity,Immune Response, Cellular,Immune Responses, Cellular,Immunities, Cell-Mediated,Immunities, Cellular,Immunity, Cell-Mediated,Response, Cellular Immune
D007166 Immunosuppressive Agents Agents that suppress immune function by one of several mechanisms of action. Classical cytotoxic immunosuppressants act by inhibiting DNA synthesis. Others may act through activation of T-CELLS or by inhibiting the activation of HELPER CELLS. While immunosuppression has been brought about in the past primarily to prevent rejection of transplanted organs, new applications involving mediation of the effects of INTERLEUKINS and other CYTOKINES are emerging. Immunosuppressant,Immunosuppressive Agent,Immunosuppressants,Agent, Immunosuppressive,Agents, Immunosuppressive
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte
D014181 Transplantation Immunology A general term for the complex phenomena involved in allo- and xenograft rejection by a host and graft vs host reaction. Although the reactions involved in transplantation immunology are primarily thymus-dependent phenomena of cellular immunity, humoral factors also play a part in late rejection. Immunology, Transplantation
D014184 Transplantation, Homologous Transplantation between individuals of the same species. Usually refers to genetically disparate individuals in contradistinction to isogeneic transplantation for genetically identical individuals. Transplantation, Allogeneic,Allogeneic Grafting,Allogeneic Transplantation,Allografting,Homografting,Homologous Transplantation,Grafting, Allogeneic

Related Publications

M Suthanthiran, and R E Morris, and T B Strom
January 2004, Journal of cellular and molecular medicine,
M Suthanthiran, and R E Morris, and T B Strom
February 1996, Clinical transplantation,
M Suthanthiran, and R E Morris, and T B Strom
February 2006, Nihon rinsho. Japanese journal of clinical medicine,
M Suthanthiran, and R E Morris, and T B Strom
January 2021, Endocrine reviews,
M Suthanthiran, and R E Morris, and T B Strom
January 2000, Progress in brain research,
M Suthanthiran, and R E Morris, and T B Strom
January 2013, Antibiotiki i khimioterapiia = Antibiotics and chemoterapy [sic],
M Suthanthiran, and R E Morris, and T B Strom
January 2013, Current topics in behavioral neurosciences,
M Suthanthiran, and R E Morris, and T B Strom
June 2000, Cancer,
M Suthanthiran, and R E Morris, and T B Strom
August 2023, Molecules (Basel, Switzerland),
M Suthanthiran, and R E Morris, and T B Strom
April 2006, Transplantation proceedings,
Copied contents to your clipboard!