Periodontal ligament cell population: the central role of fibroblasts in creating a unique tissue. 1996

P Lekic, and C A McCulloch
MRC Group in Periodontal Physiology, Faculty of Dentistry, University of Toronto, Ontario, Canada.

BACKGROUND Fibroblasts are the predominant cells of the periodontal ligament (PL) and have important roles in the development, function, and regeneration of the tooth support apparatus. Biological processes initiated during the formation of the PL contribute to the long-lasting homeostasic properties exhibited by PL fibroblast populations. METHODS The formation of the PL is likely controlled by epithelial-mesenchymal and epithelial hard tissue interactions, but the actual mechanisms that contribute to the development of cellular lineages in the PL are unknown. Fibroblasts in the normally functioning PL migrate through the tissue along collagen fibres to cementum and bone and in an apico-coronal direction during tooth eruption. ADULT TISSUE: Cell kinetic experiments have shown that PL fibroblasts comprise a renewal cell system in steady-state and the progenitors can generate multiple types of more differentiated, specialized cells. Progenitor cell populations of the PL are enriched in locations adjacent to blood vessels and in contiguous endosteal spaces. In normally functioning periodontal tissues, there is a relatively modest turnover of cells in which apoptotic cell death balances proliferation. Large increases of cell formation and cell differentiation occur after application of orthodontic forces or wounding. As PL cells comprise multiple cellular phenotypes, it has been postulated that after wounding, the separate phenotypes repopulating the site will ultimately dictate the tissue form and type. CONCLUSIONS PL fibroblasts play an essential role in responses to mechanical force loading of the tooth by remodelling and repairing effete or damaged matrix components. In consideration of the important roles played by fibroblasts in PL homeostasis, they could be described as "the architect, builder, and caretaker" of the periodontal ligament.

UI MeSH Term Description Entries
D010006 Osteoblasts Bone-forming cells which secrete an EXTRACELLULAR MATRIX. HYDROXYAPATITE crystals are then deposited into the matrix to form bone. Osteoblast
D010513 Periodontal Ligament The fibrous CONNECTIVE TISSUE surrounding the TOOTH ROOT, separating it from and attaching it to the alveolar bone (ALVEOLAR PROCESS). Alveolodental Ligament,Alveolodental Membrane,Gomphosis,Alveolodental Ligaments,Alveolodental Membranes,Gomphoses,Ligament, Alveolodental,Ligament, Periodontal,Membrane, Alveolodental,Periodontal Ligaments
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003739 Dental Cementum The bonelike rigid connective tissue covering the root of a tooth from the cementoenamel junction to the apex and lining the apex of the root canal, also assisting in tooth support by serving as attachment structures for the periodontal ligament. (Jablonski, Dictionary of Dentistry, 1992) Cementoblasts,Cementum,Cementoblast,Cementum, Dental
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013234 Stem Cells Relatively undifferentiated cells that retain the ability to divide and proliferate throughout postnatal life to provide progenitor cells that can differentiate into specialized cells. Colony-Forming Units,Mother Cells,Progenitor Cells,Colony-Forming Unit,Cell, Mother,Cell, Progenitor,Cell, Stem,Cells, Mother,Cells, Progenitor,Cells, Stem,Colony Forming Unit,Colony Forming Units,Mother Cell,Progenitor Cell,Stem Cell

Related Publications

P Lekic, and C A McCulloch
February 1997, Periodontology 2000,
P Lekic, and C A McCulloch
April 2015, Journal of periodontal research,
P Lekic, and C A McCulloch
September 2023, Australian endodontic journal : the journal of the Australian Society of Endodontology Inc,
P Lekic, and C A McCulloch
December 2017, Archives of oral biology,
P Lekic, and C A McCulloch
January 2010, Methods in molecular biology (Clifton, N.J.),
P Lekic, and C A McCulloch
November 1979, The Anatomical record,
P Lekic, and C A McCulloch
September 2019, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
Copied contents to your clipboard!